MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1 Unicode version

Theorem lss1 15712
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1  |-  ( W  e.  LMod  ->  V  e.  S )

Proof of Theorem lss1
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2297 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2297 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 lssss.v . . 3  |-  V  =  ( Base `  W
)
43a1i 10 . 2  |-  ( W  e.  LMod  ->  V  =  ( Base `  W
) )
5 eqidd 2297 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
6 eqidd 2297 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
7 lssss.s . . 3  |-  S  =  ( LSubSp `  W )
87a1i 10 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
9 ssid 3210 . . 3  |-  V  C_  V
109a1i 10 . 2  |-  ( W  e.  LMod  ->  V  C_  V )
113lmodbn0 15653 . 2  |-  ( W  e.  LMod  ->  V  =/=  (/) )
12 simpl 443 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  W  e.  LMod )
13 eqid 2296 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
14 eqid 2296 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
15 eqid 2296 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
163, 13, 14, 15lmodvscl 15660 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  V )  ->  ( x ( .s
`  W ) a )  e.  V )
17163adant3r3 1162 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) a )  e.  V )
18 simpr3 963 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  b  e.  V )
19 eqid 2296 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
203, 19lmodvacl 15657 . . 3  |-  ( ( W  e.  LMod  /\  (
x ( .s `  W ) a )  e.  V  /\  b  e.  V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
2112, 17, 18, 20syl3anc 1182 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
221, 2, 4, 5, 6, 8, 10, 11, 21islssd 15709 1  |-  ( W  e.  LMod  ->  V  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    C_ wss 3165   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   LModclmod 15643   LSubSpclss 15705
This theorem is referenced by:  lssuni  15713  islss3  15732  lssmre  15739  lspf  15747  lspval  15748  lmhmrnlss  15823  lidl1  15988  aspval  16084  isphld  16574  ocv1  16595  lnmfg  27283  islshpcv  29865  dochexmidlem8  32279  hdmaprnlem4N  32668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505  df-lmod 15645  df-lss 15706
  Copyright terms: Public domain W3C validator