MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1d Structured version   Unicode version

Theorem lss1d 16039
Description: One-dimensional subspace (or zero-dimensional if  X is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss1d.v  |-  V  =  ( Base `  W
)
lss1d.f  |-  F  =  (Scalar `  W )
lss1d.t  |-  .x.  =  ( .s `  W )
lss1d.k  |-  K  =  ( Base `  F
)
lss1d.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1d  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Distinct variable groups:    v, k, K    .x. , k, v    k, V, v    k, F    k, W, v    k, X, v
Allowed substitution hints:    S( v, k)    F( v)

Proof of Theorem lss1d
Dummy variables  a 
b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lss1d.f . . 3  |-  F  =  (Scalar `  W )
21a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  =  (Scalar `  W )
)
3 lss1d.k . . 3  |-  K  =  ( Base `  F
)
43a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  K  =  ( Base `  F
) )
5 lss1d.v . . 3  |-  V  =  ( Base `  W
)
65a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  V  =  ( Base `  W
) )
7 eqidd 2437 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( +g  `  W )  =  ( +g  `  W
) )
8 lss1d.t . . 3  |-  .x.  =  ( .s `  W )
98a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .x.  =  ( .s `  W ) )
10 lss1d.s . . 3  |-  S  =  ( LSubSp `  W )
1110a1i 11 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  S  =  ( LSubSp `  W
) )
125, 1, 8, 3lmodvscl 15967 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  K  /\  X  e.  V )  ->  (
k  .x.  X )  e.  V )
13123expa 1153 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  k  e.  K )  /\  X  e.  V
)  ->  ( k  .x.  X )  e.  V
)
1413an32s 780 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  V
)
15 eleq1a 2505 . . . . 5  |-  ( ( k  .x.  X )  e.  V  ->  (
v  =  ( k 
.x.  X )  -> 
v  e.  V ) )
1614, 15syl 16 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  V ) )
1716rexlimdva 2830 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  V ) )
1817abssdv 3417 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  V )
19 eqid 2436 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
201, 3, 19lmod0cl 15976 . . . 4  |-  ( W  e.  LMod  ->  ( 0g
`  F )  e.  K )
2120adantr 452 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( 0g `  F )  e.  K )
22 nfcv 2572 . . . 4  |-  F/_ k
( 0g `  F
)
23 nfre1 2762 . . . . . 6  |-  F/ k E. k  e.  K  v  =  ( k  .x.  X )
2423nfab 2576 . . . . 5  |-  F/_ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }
25 nfcv 2572 . . . . 5  |-  F/_ k (/)
2624, 25nfne 2695 . . . 4  |-  F/ k { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)
27 biidd 229 . . . 4  |-  ( k  =  ( 0g `  F )  ->  ( { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/)  <->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) ) )
28 ovex 6106 . . . . . 6  |-  ( k 
.x.  X )  e. 
_V
2928elabrex 5985 . . . . 5  |-  ( k  e.  K  ->  (
k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
30 ne0i 3634 . . . . 5  |-  ( ( k  .x.  X )  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  =/=  (/) )
3129, 30syl 16 . . . 4  |-  ( k  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3222, 26, 27, 31vtoclgaf 3016 . . 3  |-  ( ( 0g `  F )  e.  K  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
3321, 32syl 16 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  =/=  (/) )
34 vex 2959 . . . . . . . . . . 11  |-  a  e. 
_V
35 eqeq1 2442 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
v  =  ( k 
.x.  X )  <->  a  =  ( k  .x.  X
) ) )
3635rexbidv 2726 . . . . . . . . . . 11  |-  ( v  =  a  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  a  =  ( k  .x.  X
) ) )
3734, 36elab 3082 . . . . . . . . . 10  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  a  =  ( k  .x.  X
) )
38 oveq1 6088 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
k  .x.  X )  =  ( y  .x.  X ) )
3938eqeq2d 2447 . . . . . . . . . . 11  |-  ( k  =  y  ->  (
a  =  ( k 
.x.  X )  <->  a  =  ( y  .x.  X
) ) )
4039cbvrexv 2933 . . . . . . . . . 10  |-  ( E. k  e.  K  a  =  ( k  .x.  X )  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
4137, 40bitri 241 . . . . . . . . 9  |-  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. y  e.  K  a  =  ( y  .x.  X
) )
42 vex 2959 . . . . . . . . . . 11  |-  b  e. 
_V
43 eqeq1 2442 . . . . . . . . . . . 12  |-  ( v  =  b  ->  (
v  =  ( k 
.x.  X )  <->  b  =  ( k  .x.  X
) ) )
4443rexbidv 2726 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  b  =  ( k  .x.  X
) ) )
4542, 44elab 3082 . . . . . . . . . 10  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  b  =  ( k  .x.  X
) )
46 oveq1 6088 . . . . . . . . . . . 12  |-  ( k  =  z  ->  (
k  .x.  X )  =  ( z  .x.  X ) )
4746eqeq2d 2447 . . . . . . . . . . 11  |-  ( k  =  z  ->  (
b  =  ( k 
.x.  X )  <->  b  =  ( z  .x.  X
) ) )
4847cbvrexv 2933 . . . . . . . . . 10  |-  ( E. k  e.  K  b  =  ( k  .x.  X )  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
4945, 48bitri 241 . . . . . . . . 9  |-  ( b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. z  e.  K  b  =  ( z  .x.  X
) )
5041, 49anbi12i 679 . . . . . . . 8  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <-> 
( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
51 reeanv 2875 . . . . . . . 8  |-  ( E. y  e.  K  E. z  e.  K  (
a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  <->  ( E. y  e.  K  a  =  ( y  .x.  X )  /\  E. z  e.  K  b  =  ( z  .x.  X ) ) )
5250, 51bitr4i 244 . . . . . . 7  |-  ( ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  <->  E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) ) )
53 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  W  e.  LMod )
54 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  x  e.  K )
55 simprll 739 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
y  e.  K )
56 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( .r
`  F )  =  ( .r `  F
)
571, 3, 56lmodmcl 15962 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  K )  ->  (
x ( .r `  F ) y )  e.  K )
5853, 54, 55, 57syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( x ( .r
`  F ) y )  e.  K )
59 simprlr 740 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
z  e.  K )
60 eqid 2436 . . . . . . . . . . . . . 14  |-  ( +g  `  F )  =  ( +g  `  F )
611, 3, 60lmodacl 15961 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
x ( .r `  F ) y )  e.  K  /\  z  e.  K )  ->  (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  e.  K )
6253, 58, 59, 61syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K )
63 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  X  e.  V )
64 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( +g  `  W )  =  ( +g  `  W )
655, 64, 1, 8, 3, 60lmodvsdir 15974 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( x ( .r
`  F ) y )  e.  K  /\  z  e.  K  /\  X  e.  V )
)  ->  ( (
( x ( .r
`  F ) y ) ( +g  `  F
) z )  .x.  X )  =  ( ( ( x ( .r `  F ) y )  .x.  X
) ( +g  `  W
) ( z  .x.  X ) ) )
6653, 58, 59, 63, 65syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
)  =  ( ( ( x ( .r
`  F ) y )  .x.  X ) ( +g  `  W
) ( z  .x.  X ) ) )
675, 1, 8, 3, 56lmodvsass 15975 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  K  /\  X  e.  V )
)  ->  ( (
x ( .r `  F ) y ) 
.x.  X )  =  ( x  .x.  (
y  .x.  X )
) )
6853, 54, 55, 63, 67syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x ( .r `  F ) y )  .x.  X
)  =  ( x 
.x.  ( y  .x.  X ) ) )
6968oveq1d 6096 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( ( x ( .r `  F
) y )  .x.  X ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7066, 69eqtr2d 2469 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
71 oveq1 6088 . . . . . . . . . . . . . 14  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
k  .x.  X )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F
) z )  .x.  X ) )
7271eqeq2d 2447 . . . . . . . . . . . . 13  |-  ( k  =  ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  ->  (
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X )  <->  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z ) 
.x.  X ) ) )
7372rspcev 3052 . . . . . . . . . . . 12  |-  ( ( ( ( x ( .r `  F ) y ) ( +g  `  F ) z )  e.  K  /\  (
( x  .x.  (
y  .x.  X )
) ( +g  `  W
) ( z  .x.  X ) )  =  ( ( ( x ( .r `  F
) y ) ( +g  `  F ) z )  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) )  =  ( k  .x.  X ) )
7462, 70, 73syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  ->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) )
75 oveq2 6089 . . . . . . . . . . . . . 14  |-  ( a  =  ( y  .x.  X )  ->  (
x  .x.  a )  =  ( x  .x.  ( y  .x.  X
) ) )
76 oveq12 6090 . . . . . . . . . . . . . 14  |-  ( ( ( x  .x.  a
)  =  ( x 
.x.  ( y  .x.  X ) )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7775, 76sylan 458 . . . . . . . . . . . . 13  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x 
.x.  ( y  .x.  X ) ) ( +g  `  W ) ( z  .x.  X
) ) )
7877eqeq1d 2444 . . . . . . . . . . . 12  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <-> 
( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
7978rexbidv 2726 . . . . . . . . . . 11  |-  ( ( a  =  ( y 
.x.  X )  /\  b  =  ( z  .x.  X ) )  -> 
( E. k  e.  K  ( ( x 
.x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X )  <->  E. k  e.  K  ( ( x  .x.  ( y  .x.  X
) ) ( +g  `  W ) ( z 
.x.  X ) )  =  ( k  .x.  X ) ) )
8074, 79syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( ( y  e.  K  /\  z  e.  K )  /\  x  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
8180expr 599 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( x  e.  K  ->  ( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8281com23 74 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( y  e.  K  /\  z  e.  K ) )  -> 
( ( a  =  ( y  .x.  X
)  /\  b  =  ( z  .x.  X
) )  ->  (
x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8382rexlimdvva 2837 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. y  e.  K  E. z  e.  K  ( a  =  ( y  .x.  X )  /\  b  =  ( z  .x.  X ) )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8452, 83syl5bi 209 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )  ->  ( x  e.  K  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) )
8584exp3acom23 1381 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( a  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  ( x  e.  K  ->  E. k  e.  K  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
8685com24 83 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
x  e.  K  -> 
( a  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) }  ->  (
b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) ) ) )
87863imp2 1168 . . 3  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
88 ovex 6106 . . . 4  |-  ( ( x  .x.  a ) ( +g  `  W
) b )  e. 
_V
89 eqeq1 2442 . . . . 5  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  (
v  =  ( k 
.x.  X )  <->  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9089rexbidv 2726 . . . 4  |-  ( v  =  ( ( x 
.x.  a ) ( +g  `  W ) b )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) ) )
9188, 90elab 3082 . . 3  |-  ( ( ( x  .x.  a
) ( +g  `  W
) b )  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  ( (
x  .x.  a )
( +g  `  W ) b )  =  ( k  .x.  X ) )
9287, 91sylibr 204 . 2  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  ( x  e.  K  /\  a  e. 
{ v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  /\  b  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )  ->  ( (
x  .x.  a )
( +g  `  W ) b )  e.  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
932, 4, 6, 7, 9, 11, 18, 33, 92islssd 16012 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   E.wrex 2706   (/)c0 3628   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529   .rcmulr 13530  Scalarcsca 13532   .scvsca 13533   0gc0g 13723   LModclmod 15950   LSubSpclss 16008
This theorem is referenced by:  lspsn  16078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-plusg 13542  df-0g 13727  df-mnd 14690  df-grp 14812  df-mgp 15649  df-rng 15663  df-lmod 15952  df-lss 16009
  Copyright terms: Public domain W3C validator