Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsslindf Unicode version

Theorem lsslindf 27300
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lsslindf.u  |-  U  =  ( LSubSp `  W )
lsslindf.x  |-  X  =  ( Ws  S )
Assertion
Ref Expression
lsslindf  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  X  <->  F LIndF  W ) )

Proof of Theorem lsslindf
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 27278 . . . 4  |-  Rel LIndF
21brrelexi 4729 . . 3  |-  ( F LIndF 
X  ->  F  e.  _V )
32a1i 10 . 2  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  X  ->  F  e.  _V ) )
41brrelexi 4729 . . 3  |-  ( F LIndF 
W  ->  F  e.  _V )
54a1i 10 . 2  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  W  ->  F  e.  _V ) )
6 simpr 447 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  X )
)  ->  F : dom  F --> ( Base `  X
) )
7 lsslindf.x . . . . . . . . 9  |-  X  =  ( Ws  S )
8 eqid 2283 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
97, 8ressbasss 13200 . . . . . . . 8  |-  ( Base `  X )  C_  ( Base `  W )
10 fss 5397 . . . . . . . 8  |-  ( ( F : dom  F --> ( Base `  X )  /\  ( Base `  X
)  C_  ( Base `  W ) )  ->  F : dom  F --> ( Base `  W ) )
116, 9, 10sylancl 643 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  X )
)  ->  F : dom  F --> ( Base `  W
) )
12 ffn 5389 . . . . . . . . 9  |-  ( F : dom  F --> ( Base `  W )  ->  F  Fn  dom  F )
1312adantl 452 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  W )
)  ->  F  Fn  dom  F )
14 simp3 957 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ran  F 
C_  S )
15 lsslindf.u . . . . . . . . . . . . 13  |-  U  =  ( LSubSp `  W )
168, 15lssss 15694 . . . . . . . . . . . 12  |-  ( S  e.  U  ->  S  C_  ( Base `  W
) )
17163ad2ant2 977 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  S  C_  ( Base `  W
) )
187, 8ressbas2 13199 . . . . . . . . . . 11  |-  ( S 
C_  ( Base `  W
)  ->  S  =  ( Base `  X )
)
1917, 18syl 15 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  S  =  ( Base `  X
) )
2014, 19sseqtrd 3214 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ran  F 
C_  ( Base `  X
) )
2120adantr 451 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  W )
)  ->  ran  F  C_  ( Base `  X )
)
22 df-f 5259 . . . . . . . 8  |-  ( F : dom  F --> ( Base `  X )  <->  ( F  Fn  dom  F  /\  ran  F 
C_  ( Base `  X
) ) )
2313, 21, 22sylanbrc 645 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  W )
)  ->  F : dom  F --> ( Base `  X
) )
2411, 23impbida 805 . . . . . 6  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F : dom  F --> ( Base `  X )  <->  F : dom  F --> ( Base `  W
) ) )
2524adantr 451 . . . . 5  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F : dom  F --> ( Base `  X
)  <->  F : dom  F --> ( Base `  W )
) )
26 simpl2 959 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  S  e.  U
)
27 eqid 2283 . . . . . . . . . . . 12  |-  (Scalar `  W )  =  (Scalar `  W )
287, 27resssca 13283 . . . . . . . . . . 11  |-  ( S  e.  U  ->  (Scalar `  W )  =  (Scalar `  X ) )
2928eqcomd 2288 . . . . . . . . . 10  |-  ( S  e.  U  ->  (Scalar `  X )  =  (Scalar `  W ) )
3026, 29syl 15 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  (Scalar `  X )  =  (Scalar `  W )
)
3130fveq2d 5529 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( Base `  (Scalar `  X ) )  =  ( Base `  (Scalar `  W ) ) )
3230fveq2d 5529 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( 0g `  (Scalar `  X ) )  =  ( 0g `  (Scalar `  W ) ) )
3332sneqd 3653 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  { ( 0g
`  (Scalar `  X )
) }  =  {
( 0g `  (Scalar `  W ) ) } )
3431, 33difeq12d 3295 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( Base `  (Scalar `  X )
)  \  { ( 0g `  (Scalar `  X
) ) } )  =  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } ) )
35 eqid 2283 . . . . . . . . . . . . 13  |-  ( .s
`  W )  =  ( .s `  W
)
367, 35ressvsca 13284 . . . . . . . . . . . 12  |-  ( S  e.  U  ->  ( .s `  W )  =  ( .s `  X
) )
3736eqcomd 2288 . . . . . . . . . . 11  |-  ( S  e.  U  ->  ( .s `  X )  =  ( .s `  W
) )
3826, 37syl 15 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( .s `  X )  =  ( .s `  W ) )
3938oveqd 5875 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( k ( .s `  X ) ( F `  x
) )  =  ( k ( .s `  W ) ( F `
 x ) ) )
40 simpl1 958 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  W  e.  LMod )
41 imassrn 5025 . . . . . . . . . . . 12  |-  ( F
" ( dom  F  \  { x } ) )  C_  ran  F
42 simpl3 960 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ran  F  C_  S
)
4341, 42syl5ss 3190 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F "
( dom  F  \  {
x } ) ) 
C_  S )
44 eqid 2283 . . . . . . . . . . . 12  |-  ( LSpan `  W )  =  (
LSpan `  W )
45 eqid 2283 . . . . . . . . . . . 12  |-  ( LSpan `  X )  =  (
LSpan `  X )
467, 44, 45, 15lsslsp 15772 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ( F " ( dom  F  \  { x } ) )  C_  S )  ->  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { x } ) ) )  =  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) ) )
4740, 26, 43, 46syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) )  =  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) ) )
4847eqcomd 2288 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  =  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) )
4939, 48eleq12d 2351 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( k ( .s `  X
) ( F `  x ) )  e.  ( ( LSpan `  X
) `  ( F " ( dom  F  \  { x } ) ) )  <->  ( k
( .s `  W
) ( F `  x ) )  e.  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5049notbid 285 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  <->  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5134, 50raleqbidv 2748 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( A. k  e.  ( ( Base `  (Scalar `  X ) )  \  { ( 0g `  (Scalar `  X ) ) } )  -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  <->  A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5251ralbidv 2563 . . . . 5  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X ) )  \  { ( 0g `  (Scalar `  X ) ) } )  -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  <->  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5325, 52anbi12d 691 . . . 4  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( F : dom  F --> ( Base `  X )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X
) )  \  {
( 0g `  (Scalar `  X ) ) } )  -.  ( k ( .s `  X
) ( F `  x ) )  e.  ( ( LSpan `  X
) `  ( F " ( dom  F  \  { x } ) ) ) )  <->  ( F : dom  F --> ( Base `  W )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) ( F `  x ) )  e.  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
54 ovex 5883 . . . . . . 7  |-  ( Ws  S )  e.  _V
557, 54eqeltri 2353 . . . . . 6  |-  X  e. 
_V
5655a1i 10 . . . . 5  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  X  e.  _V )
57 eqid 2283 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
58 eqid 2283 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
59 eqid 2283 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
60 eqid 2283 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
61 eqid 2283 . . . . . 6  |-  ( 0g
`  (Scalar `  X )
)  =  ( 0g
`  (Scalar `  X )
)
6257, 58, 45, 59, 60, 61islindf 27282 . . . . 5  |-  ( ( X  e.  _V  /\  F  e.  _V )  ->  ( F LIndF  X  <->  ( F : dom  F --> ( Base `  X )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X
) )  \  {
( 0g `  (Scalar `  X ) ) } )  -.  ( k ( .s `  X
) ( F `  x ) )  e.  ( ( LSpan `  X
) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
6356, 62sylan 457 . . . 4  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F LIndF  X  <->  ( F : dom  F --> ( Base `  X )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X ) )  \  { ( 0g `  (Scalar `  X ) ) } )  -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
64 eqid 2283 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
65 eqid 2283 . . . . . 6  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
668, 35, 44, 27, 64, 65islindf 27282 . . . . 5  |-  ( ( W  e.  LMod  /\  F  e.  _V )  ->  ( F LIndF  W  <->  ( F : dom  F --> ( Base `  W
)  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
67663ad2antl1 1117 . . . 4  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F LIndF  W  <->  ( F : dom  F --> ( Base `  W )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
6853, 63, 673bitr4d 276 . . 3  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F LIndF  X  <->  F LIndF 
W ) )
6968ex 423 . 2  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F  e.  _V  ->  ( F LIndF  X  <->  F LIndF  W ) ) )
703, 5, 69pm5.21ndd 343 1  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  X  <->  F LIndF  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149    C_ wss 3152   {csn 3640   class class class wbr 4023   dom cdm 4689   ran crn 4690   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149  Scalarcsca 13211   .scvsca 13212   0gc0g 13400   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728   LIndF clindf 27274
This theorem is referenced by:  lsslinds  27301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lindf 27276
  Copyright terms: Public domain W3C validator