MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Unicode version

Theorem lssnlm 18729
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x  |-  X  =  ( Ws  U )
lssnlm.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssnlm  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmMod )

Proof of Theorem lssnlm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 18706 . . . . 5  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
21adantr 452 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  W  e. NrmGrp )
3 nlmlmod 18707 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  LMod )
4 lssnlm.s . . . . . 6  |-  S  =  ( LSubSp `  W )
54lsssubg 16026 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
63, 5sylan 458 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
7 lssnlm.x . . . . 5  |-  X  =  ( Ws  U )
87subgngp 18669 . . . 4  |-  ( ( W  e. NrmGrp  /\  U  e.  (SubGrp `  W )
)  ->  X  e. NrmGrp )
92, 6, 8syl2anc 643 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmGrp )
107, 4lsslmod 16029 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
113, 10sylan 458 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e.  LMod )
12 eqid 2436 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
137, 12resssca 13597 . . . . 5  |-  ( U  e.  S  ->  (Scalar `  W )  =  (Scalar `  X ) )
1413adantl 453 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
1512nlmnrg 18708 . . . . 5  |-  ( W  e. NrmMod  ->  (Scalar `  W )  e. NrmRing )
1615adantr 452 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  W )  e. NrmRing )
1714, 16eqeltrrd 2511 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  X )  e. NrmRing )
189, 11, 173jca 1134 . 2  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  ( X  e. NrmGrp  /\  X  e. 
LMod  /\  (Scalar `  X
)  e. NrmRing ) )
19 simpll 731 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  W  e. NrmMod )
20 simprl 733 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  x  e.  ( Base `  (Scalar `  X ) ) )
2114adantr 452 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (Scalar `  W )  =  (Scalar `  X ) )
2221fveq2d 5725 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  X
) ) )
2320, 22eleqtrrd 2513 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  x  e.  ( Base `  (Scalar `  W ) ) )
246adantr 452 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  e.  (SubGrp `  W )
)
25 eqid 2436 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
2625subgss 14938 . . . . . . 7  |-  ( U  e.  (SubGrp `  W
)  ->  U  C_  ( Base `  W ) )
2724, 26syl 16 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  C_  ( Base `  W
) )
28 simprr 734 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  ( Base `  X
) )
297subgbas 14941 . . . . . . . 8  |-  ( U  e.  (SubGrp `  W
)  ->  U  =  ( Base `  X )
)
3024, 29syl 16 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  =  ( Base `  X
) )
3128, 30eleqtrrd 2513 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  U )
3227, 31sseldd 3342 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  ( Base `  W
) )
33 eqid 2436 . . . . . 6  |-  ( norm `  W )  =  (
norm `  W )
34 eqid 2436 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
35 eqid 2436 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
36 eqid 2436 . . . . . 6  |-  ( norm `  (Scalar `  W )
)  =  ( norm `  (Scalar `  W )
)
3725, 33, 34, 12, 35, 36nmvs 18705 . . . . 5  |-  ( ( W  e. NrmMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( Base `  W ) )  -> 
( ( norm `  W
) `  ( x
( .s `  W
) y ) )  =  ( ( (
norm `  (Scalar `  W
) ) `  x
)  x.  ( (
norm `  W ) `  y ) ) )
3819, 23, 32, 37syl3anc 1184 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  W ) `  ( x ( .s
`  W ) y ) )  =  ( ( ( norm `  (Scalar `  W ) ) `  x )  x.  (
( norm `  W ) `  y ) ) )
39 simplr 732 . . . . . . . 8  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  e.  S )
407, 34ressvsca 13598 . . . . . . . 8  |-  ( U  e.  S  ->  ( .s `  W )  =  ( .s `  X
) )
4139, 40syl 16 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( .s `  W )  =  ( .s `  X
) )
4241oveqd 6091 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
x ( .s `  W ) y )  =  ( x ( .s `  X ) y ) )
4342fveq2d 5725 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  W ) y ) )  =  ( ( norm `  X
) `  ( x
( .s `  X
) y ) ) )
443ad2antrr 707 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  W  e.  LMod )
4512, 34, 35, 4lssvscl 16024 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  U )
)  ->  ( x
( .s `  W
) y )  e.  U )
4644, 39, 23, 31, 45syl22anc 1185 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
x ( .s `  W ) y )  e.  U )
47 eqid 2436 . . . . . . 7  |-  ( norm `  X )  =  (
norm `  X )
487, 33, 47subgnm2 18668 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  (
x ( .s `  W ) y )  e.  U )  -> 
( ( norm `  X
) `  ( x
( .s `  W
) y ) )  =  ( ( norm `  W ) `  (
x ( .s `  W ) y ) ) )
4924, 46, 48syl2anc 643 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  W ) y ) )  =  ( ( norm `  W
) `  ( x
( .s `  W
) y ) ) )
5043, 49eqtr3d 2470 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( norm `  W
) `  ( x
( .s `  W
) y ) ) )
5121eqcomd 2441 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (Scalar `  X )  =  (Scalar `  W ) )
5251fveq2d 5725 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( norm `  (Scalar `  X
) )  =  (
norm `  (Scalar `  W
) ) )
5352fveq1d 5723 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  (Scalar `  X
) ) `  x
)  =  ( (
norm `  (Scalar `  W
) ) `  x
) )
547, 33, 47subgnm2 18668 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  y  e.  U )  ->  (
( norm `  X ) `  y )  =  ( ( norm `  W
) `  y )
)
5524, 31, 54syl2anc 643 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  y )  =  ( ( norm `  W
) `  y )
)
5653, 55oveq12d 6092 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) )  =  ( ( ( norm `  (Scalar `  W )
) `  x )  x.  ( ( norm `  W
) `  y )
) )
5738, 50, 563eqtr4d 2478 . . 3  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) )
5857ralrimivva 2791 . 2  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  A. x  e.  ( Base `  (Scalar `  X ) ) A. y  e.  ( Base `  X ) ( (
norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) )
59 eqid 2436 . . 3  |-  ( Base `  X )  =  (
Base `  X )
60 eqid 2436 . . 3  |-  ( .s
`  X )  =  ( .s `  X
)
61 eqid 2436 . . 3  |-  (Scalar `  X )  =  (Scalar `  X )
62 eqid 2436 . . 3  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
63 eqid 2436 . . 3  |-  ( norm `  (Scalar `  X )
)  =  ( norm `  (Scalar `  X )
)
6459, 47, 60, 61, 62, 63isnlm 18704 . 2  |-  ( X  e. NrmMod 
<->  ( ( X  e. NrmGrp  /\  X  e.  LMod  /\  (Scalar `  X )  e. NrmRing )  /\  A. x  e.  ( Base `  (Scalar `  X ) ) A. y  e.  ( Base `  X ) ( (
norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) ) )
6518, 58, 64sylanbrc 646 1  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2698    C_ wss 3313   ` cfv 5447  (class class class)co 6074    x. cmul 8988   Basecbs 13462   ↾s cress 13463  Scalarcsca 13525   .scvsca 13526  SubGrpcsubg 14931   LModclmod 15943   LSubSpclss 16001   normcnm 18617  NrmGrpcngp 18618  NrmRingcnrg 18620  NrmModcnlm 18621
This theorem is referenced by:  lssnvc  18730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-sup 7439  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-sca 13538  df-vsca 13539  df-tset 13541  df-ds 13544  df-rest 13643  df-topn 13644  df-topgen 13660  df-0g 13720  df-mnd 14683  df-grp 14805  df-minusg 14806  df-sbg 14807  df-subg 14934  df-mgp 15642  df-rng 15656  df-ur 15658  df-lmod 15945  df-lss 16002  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-xms 18343  df-ms 18344  df-nm 18623  df-ngp 18624  df-nlm 18627
  Copyright terms: Public domain W3C validator