MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Unicode version

Theorem lssnlm 18601
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x  |-  X  =  ( Ws  U )
lssnlm.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssnlm  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmMod )

Proof of Theorem lssnlm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 18578 . . . . 5  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
21adantr 452 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  W  e. NrmGrp )
3 nlmlmod 18579 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  LMod )
4 lssnlm.s . . . . . 6  |-  S  =  ( LSubSp `  W )
54lsssubg 15954 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
63, 5sylan 458 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
7 lssnlm.x . . . . 5  |-  X  =  ( Ws  U )
87subgngp 18541 . . . 4  |-  ( ( W  e. NrmGrp  /\  U  e.  (SubGrp `  W )
)  ->  X  e. NrmGrp )
92, 6, 8syl2anc 643 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmGrp )
107, 4lsslmod 15957 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
113, 10sylan 458 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e.  LMod )
12 eqid 2381 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
137, 12resssca 13525 . . . . 5  |-  ( U  e.  S  ->  (Scalar `  W )  =  (Scalar `  X ) )
1413adantl 453 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
1512nlmnrg 18580 . . . . 5  |-  ( W  e. NrmMod  ->  (Scalar `  W )  e. NrmRing )
1615adantr 452 . . . 4  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  W )  e. NrmRing )
1714, 16eqeltrrd 2456 . . 3  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  (Scalar `  X )  e. NrmRing )
189, 11, 173jca 1134 . 2  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  ( X  e. NrmGrp  /\  X  e. 
LMod  /\  (Scalar `  X
)  e. NrmRing ) )
19 simpll 731 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  W  e. NrmMod )
20 simprl 733 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  x  e.  ( Base `  (Scalar `  X ) ) )
2114adantr 452 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (Scalar `  W )  =  (Scalar `  X ) )
2221fveq2d 5666 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  X
) ) )
2320, 22eleqtrrd 2458 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  x  e.  ( Base `  (Scalar `  W ) ) )
246adantr 452 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  e.  (SubGrp `  W )
)
25 eqid 2381 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
2625subgss 14866 . . . . . . 7  |-  ( U  e.  (SubGrp `  W
)  ->  U  C_  ( Base `  W ) )
2724, 26syl 16 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  C_  ( Base `  W
) )
28 simprr 734 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  ( Base `  X
) )
297subgbas 14869 . . . . . . . 8  |-  ( U  e.  (SubGrp `  W
)  ->  U  =  ( Base `  X )
)
3024, 29syl 16 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  =  ( Base `  X
) )
3128, 30eleqtrrd 2458 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  U )
3227, 31sseldd 3286 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  y  e.  ( Base `  W
) )
33 eqid 2381 . . . . . 6  |-  ( norm `  W )  =  (
norm `  W )
34 eqid 2381 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
35 eqid 2381 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
36 eqid 2381 . . . . . 6  |-  ( norm `  (Scalar `  W )
)  =  ( norm `  (Scalar `  W )
)
3725, 33, 34, 12, 35, 36nmvs 18577 . . . . 5  |-  ( ( W  e. NrmMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( Base `  W ) )  -> 
( ( norm `  W
) `  ( x
( .s `  W
) y ) )  =  ( ( (
norm `  (Scalar `  W
) ) `  x
)  x.  ( (
norm `  W ) `  y ) ) )
3819, 23, 32, 37syl3anc 1184 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  W ) `  ( x ( .s
`  W ) y ) )  =  ( ( ( norm `  (Scalar `  W ) ) `  x )  x.  (
( norm `  W ) `  y ) ) )
39 simplr 732 . . . . . . . 8  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  U  e.  S )
407, 34ressvsca 13526 . . . . . . . 8  |-  ( U  e.  S  ->  ( .s `  W )  =  ( .s `  X
) )
4139, 40syl 16 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( .s `  W )  =  ( .s `  X
) )
4241oveqd 6031 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
x ( .s `  W ) y )  =  ( x ( .s `  X ) y ) )
4342fveq2d 5666 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  W ) y ) )  =  ( ( norm `  X
) `  ( x
( .s `  X
) y ) ) )
443ad2antrr 707 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  W  e.  LMod )
4512, 34, 35, 4lssvscl 15952 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  U )
)  ->  ( x
( .s `  W
) y )  e.  U )
4644, 39, 23, 31, 45syl22anc 1185 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
x ( .s `  W ) y )  e.  U )
47 eqid 2381 . . . . . . 7  |-  ( norm `  X )  =  (
norm `  X )
487, 33, 47subgnm2 18540 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  (
x ( .s `  W ) y )  e.  U )  -> 
( ( norm `  X
) `  ( x
( .s `  W
) y ) )  =  ( ( norm `  W ) `  (
x ( .s `  W ) y ) ) )
4924, 46, 48syl2anc 643 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  W ) y ) )  =  ( ( norm `  W
) `  ( x
( .s `  W
) y ) ) )
5043, 49eqtr3d 2415 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( norm `  W
) `  ( x
( .s `  W
) y ) ) )
5121eqcomd 2386 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (Scalar `  X )  =  (Scalar `  W ) )
5251fveq2d 5666 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  ( norm `  (Scalar `  X
) )  =  (
norm `  (Scalar `  W
) ) )
5352fveq1d 5664 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  (Scalar `  X
) ) `  x
)  =  ( (
norm `  (Scalar `  W
) ) `  x
) )
547, 33, 47subgnm2 18540 . . . . . 6  |-  ( ( U  e.  (SubGrp `  W )  /\  y  e.  U )  ->  (
( norm `  X ) `  y )  =  ( ( norm `  W
) `  y )
)
5524, 31, 54syl2anc 643 . . . . 5  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  y )  =  ( ( norm `  W
) `  y )
)
5653, 55oveq12d 6032 . . . 4  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) )  =  ( ( ( norm `  (Scalar `  W )
) `  x )  x.  ( ( norm `  W
) `  y )
) )
5738, 50, 563eqtr4d 2423 . . 3  |-  ( ( ( W  e. NrmMod  /\  U  e.  S )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  y  e.  ( Base `  X )
) )  ->  (
( norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) )
5857ralrimivva 2735 . 2  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  A. x  e.  ( Base `  (Scalar `  X ) ) A. y  e.  ( Base `  X ) ( (
norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) )
59 eqid 2381 . . 3  |-  ( Base `  X )  =  (
Base `  X )
60 eqid 2381 . . 3  |-  ( .s
`  X )  =  ( .s `  X
)
61 eqid 2381 . . 3  |-  (Scalar `  X )  =  (Scalar `  X )
62 eqid 2381 . . 3  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
63 eqid 2381 . . 3  |-  ( norm `  (Scalar `  X )
)  =  ( norm `  (Scalar `  X )
)
6459, 47, 60, 61, 62, 63isnlm 18576 . 2  |-  ( X  e. NrmMod 
<->  ( ( X  e. NrmGrp  /\  X  e.  LMod  /\  (Scalar `  X )  e. NrmRing )  /\  A. x  e.  ( Base `  (Scalar `  X ) ) A. y  e.  ( Base `  X ) ( (
norm `  X ) `  ( x ( .s
`  X ) y ) )  =  ( ( ( norm `  (Scalar `  X ) ) `  x )  x.  (
( norm `  X ) `  y ) ) ) )
6518, 58, 64sylanbrc 646 1  |-  ( ( W  e. NrmMod  /\  U  e.  S )  ->  X  e. NrmMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2643    C_ wss 3257   ` cfv 5388  (class class class)co 6014    x. cmul 8922   Basecbs 13390   ↾s cress 13391  Scalarcsca 13453   .scvsca 13454  SubGrpcsubg 14859   LModclmod 15871   LSubSpclss 15929   normcnm 18489  NrmGrpcngp 18490  NrmRingcnrg 18492  NrmModcnlm 18493
This theorem is referenced by:  lssnvc  18602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-rep 4255  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635  ax-cnex 8973  ax-resscn 8974  ax-1cn 8975  ax-icn 8976  ax-addcl 8977  ax-addrcl 8978  ax-mulcl 8979  ax-mulrcl 8980  ax-mulcom 8981  ax-addass 8982  ax-mulass 8983  ax-distr 8984  ax-i2m1 8985  ax-1ne0 8986  ax-1rid 8987  ax-rnegex 8988  ax-rrecex 8989  ax-cnre 8990  ax-pre-lttri 8991  ax-pre-lttrn 8992  ax-pre-ltadd 8993  ax-pre-mulgt0 8994  ax-pre-sup 8995
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-nel 2547  df-ral 2648  df-rex 2649  df-reu 2650  df-rmo 2651  df-rab 2652  df-v 2895  df-sbc 3099  df-csb 3189  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-pss 3273  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-tp 3759  df-op 3760  df-uni 3952  df-iun 4031  df-br 4148  df-opab 4202  df-mpt 4203  df-tr 4238  df-eprel 4429  df-id 4433  df-po 4438  df-so 4439  df-fr 4476  df-we 4478  df-ord 4519  df-on 4520  df-lim 4521  df-suc 4522  df-om 4780  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-iota 5352  df-fun 5390  df-fn 5391  df-f 5392  df-f1 5393  df-fo 5394  df-f1o 5395  df-fv 5396  df-ov 6017  df-oprab 6018  df-mpt2 6019  df-1st 6282  df-2nd 6283  df-riota 6479  df-recs 6563  df-rdg 6598  df-er 6835  df-map 6950  df-en 7040  df-dom 7041  df-sdom 7042  df-sup 7375  df-pnf 9049  df-mnf 9050  df-xr 9051  df-ltxr 9052  df-le 9053  df-sub 9219  df-neg 9220  df-div 9604  df-nn 9927  df-2 9984  df-3 9985  df-4 9986  df-5 9987  df-6 9988  df-7 9989  df-8 9990  df-9 9991  df-10 9992  df-n0 10148  df-z 10209  df-dec 10309  df-uz 10415  df-q 10501  df-rp 10539  df-xneg 10636  df-xadd 10637  df-xmul 10638  df-ndx 13393  df-slot 13394  df-base 13395  df-sets 13396  df-ress 13397  df-plusg 13463  df-sca 13466  df-vsca 13467  df-tset 13469  df-ds 13472  df-rest 13571  df-topn 13572  df-topgen 13588  df-0g 13648  df-mnd 14611  df-grp 14733  df-minusg 14734  df-sbg 14735  df-subg 14862  df-mgp 15570  df-rng 15584  df-ur 15586  df-lmod 15873  df-lss 15930  df-xmet 16613  df-met 16614  df-bl 16615  df-mopn 16616  df-top 16880  df-bases 16882  df-topon 16883  df-topsp 16884  df-xms 18253  df-ms 18254  df-nm 18495  df-ngp 18496  df-nlm 18499
  Copyright terms: Public domain W3C validator