MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Unicode version

Theorem lssvancl1 15718
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 15905. Can it be used along with lspsnne1 15886, lspsnne2 15887 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v  |-  V  =  ( Base `  W
)
lssvancl.p  |-  .+  =  ( +g  `  W )
lssvancl.s  |-  S  =  ( LSubSp `  W )
lssvancl.w  |-  ( ph  ->  W  e.  LMod )
lssvancl.u  |-  ( ph  ->  U  e.  S )
lssvancl.x  |-  ( ph  ->  X  e.  U )
lssvancl.y  |-  ( ph  ->  Y  e.  V )
lssvancl.n  |-  ( ph  ->  -.  Y  e.  U
)
Assertion
Ref Expression
lssvancl1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2  |-  ( ph  ->  -.  Y  e.  U
)
2 lssvancl.w . . . . . 6  |-  ( ph  ->  W  e.  LMod )
3 lmodabl 15688 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Abel )
42, 3syl 15 . . . . 5  |-  ( ph  ->  W  e.  Abel )
5 lssvancl.u . . . . . 6  |-  ( ph  ->  U  e.  S )
6 lssvancl.x . . . . . 6  |-  ( ph  ->  X  e.  U )
7 lssvancl.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 lssvancl.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8lssel 15711 . . . . . 6  |-  ( ( U  e.  S  /\  X  e.  U )  ->  X  e.  V )
105, 6, 9syl2anc 642 . . . . 5  |-  ( ph  ->  X  e.  V )
11 lssvancl.y . . . . 5  |-  ( ph  ->  Y  e.  V )
12 lssvancl.p . . . . . 6  |-  .+  =  ( +g  `  W )
13 eqid 2296 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
147, 12, 13ablpncan2 15133 . . . . 5  |-  ( ( W  e.  Abel  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
) ( -g `  W
) X )  =  Y )
154, 10, 11, 14syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  =  Y )
1615adantr 451 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  =  Y )
172adantr 451 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  W  e.  LMod )
185adantr 451 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  U  e.  S )
19 simpr 447 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( X  .+  Y )  e.  U
)
206adantr 451 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  X  e.  U )
2113, 8lssvsubcl 15717 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( ( X 
.+  Y )  e.  U  /\  X  e.  U ) )  -> 
( ( X  .+  Y ) ( -g `  W ) X )  e.  U )
2217, 18, 19, 20, 21syl22anc 1183 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  e.  U
)
2316, 22eqeltrrd 2371 . 2  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  Y  e.  U )
241, 23mtand 640 1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   -gcsg 14381   Abelcabel 15106   LModclmod 15643   LSubSpclss 15705
This theorem is referenced by:  lssvancl2  15719  dvh3dim2  32260  dvh3dim3N  32261  hdmap11lem2  32657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706
  Copyright terms: Public domain W3C validator