MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Unicode version

Theorem lssvancl1 15702
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 15889. Can it be used along with lspsnne1 15870, lspsnne2 15871 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v  |-  V  =  ( Base `  W
)
lssvancl.p  |-  .+  =  ( +g  `  W )
lssvancl.s  |-  S  =  ( LSubSp `  W )
lssvancl.w  |-  ( ph  ->  W  e.  LMod )
lssvancl.u  |-  ( ph  ->  U  e.  S )
lssvancl.x  |-  ( ph  ->  X  e.  U )
lssvancl.y  |-  ( ph  ->  Y  e.  V )
lssvancl.n  |-  ( ph  ->  -.  Y  e.  U
)
Assertion
Ref Expression
lssvancl1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2  |-  ( ph  ->  -.  Y  e.  U
)
2 lssvancl.w . . . . . 6  |-  ( ph  ->  W  e.  LMod )
3 lmodabl 15672 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Abel )
42, 3syl 15 . . . . 5  |-  ( ph  ->  W  e.  Abel )
5 lssvancl.u . . . . . 6  |-  ( ph  ->  U  e.  S )
6 lssvancl.x . . . . . 6  |-  ( ph  ->  X  e.  U )
7 lssvancl.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 lssvancl.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8lssel 15695 . . . . . 6  |-  ( ( U  e.  S  /\  X  e.  U )  ->  X  e.  V )
105, 6, 9syl2anc 642 . . . . 5  |-  ( ph  ->  X  e.  V )
11 lssvancl.y . . . . 5  |-  ( ph  ->  Y  e.  V )
12 lssvancl.p . . . . . 6  |-  .+  =  ( +g  `  W )
13 eqid 2283 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
147, 12, 13ablpncan2 15117 . . . . 5  |-  ( ( W  e.  Abel  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
) ( -g `  W
) X )  =  Y )
154, 10, 11, 14syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  =  Y )
1615adantr 451 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  =  Y )
172adantr 451 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  W  e.  LMod )
185adantr 451 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  U  e.  S )
19 simpr 447 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( X  .+  Y )  e.  U
)
206adantr 451 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  X  e.  U )
2113, 8lssvsubcl 15701 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( ( X 
.+  Y )  e.  U  /\  X  e.  U ) )  -> 
( ( X  .+  Y ) ( -g `  W ) X )  e.  U )
2217, 18, 19, 20, 21syl22anc 1183 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  e.  U
)
2316, 22eqeltrrd 2358 . 2  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  Y  e.  U )
241, 23mtand 640 1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   -gcsg 14365   Abelcabel 15090   LModclmod 15627   LSubSpclss 15689
This theorem is referenced by:  lssvancl2  15703  dvh3dim2  31011  dvh3dim3N  31012  hdmap11lem2  31408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690
  Copyright terms: Public domain W3C validator