MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt2sqd Unicode version

Theorem lt2sqd 11484
Description: The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
resqcld.1  |-  ( ph  ->  A  e.  RR )
lt2sqd.2  |-  ( ph  ->  B  e.  RR )
lt2sqd.3  |-  ( ph  ->  0  <_  A )
lt2sqd.4  |-  ( ph  ->  0  <_  B )
Assertion
Ref Expression
lt2sqd  |-  ( ph  ->  ( A  <  B  <->  ( A ^ 2 )  <  ( B ^
2 ) ) )

Proof of Theorem lt2sqd
StepHypRef Expression
1 resqcld.1 . 2  |-  ( ph  ->  A  e.  RR )
2 lt2sqd.3 . 2  |-  ( ph  ->  0  <_  A )
3 lt2sqd.2 . 2  |-  ( ph  ->  B  e.  RR )
4 lt2sqd.4 . 2  |-  ( ph  ->  0  <_  B )
5 lt2sq 11382 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  <->  ( A ^
2 )  <  ( B ^ 2 ) ) )
61, 2, 3, 4, 5syl22anc 1185 1  |-  ( ph  ->  ( A  <  B  <->  ( A ^ 2 )  <  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1717   class class class wbr 4153  (class class class)co 6020   RRcr 8922   0cc0 8923    < clt 9053    <_ cle 9054   2c2 9981   ^cexp 11309
This theorem is referenced by:  nonsq  13078  pythagtriplem10  13121  pockthg  13201  minveclem3b  19196  minveclem3  19197  minveclem4  19200  tangtx  20280  tanregt0  20308  bndatandm  20636  basellem8  20737  chpub  20871  bposlem6  20940  bposlem7  20941  2sqblem  21028  minvecolem4  22230  minvecolem5  22231  sqsscirc1  24110  dvreasin  25980  areacirclem2  25982  areacirclem3  25983  areacirclem5  25986  areacirclem6  25987  areacirc  25988  cntotbnd  26196  rrndstprj2  26231  pell14qrgt0  26613  pell14qrgapw  26630  rmspecnonsq  26661  rmspecfund  26663  rmspecpos  26670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-seq 11251  df-exp 11310
  Copyright terms: Public domain W3C validator