MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd2dd Unicode version

Theorem ltadd2dd 9154
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
letrd.3  |-  ( ph  ->  C  e.  RR )
ltletrd.4  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltadd2dd  |-  ( ph  ->  ( C  +  A
)  <  ( C  +  B ) )

Proof of Theorem ltadd2dd
StepHypRef Expression
1 ltletrd.4 . 2  |-  ( ph  ->  A  <  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 letrd.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4ltadd2d 9151 . 2  |-  ( ph  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B ) ) )
61, 5mpbid 202 1  |-  ( ph  ->  ( C  +  A
)  <  ( C  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   class class class wbr 4146  (class class class)co 6013   RRcr 8915    + caddc 8919    < clt 9046
This theorem is referenced by:  eirrlem  12723  prmreclem5  13208  iccntr  18716  icccmplem2  18718  ivthlem2  19209  uniioombllem3  19337  opnmbllem  19353  dvcnvre  19763  cosordlem  20293  efif1olem2  20305  atanlogaddlem  20613  pntibndlem2  21145  pntlemr  21156  dya2icoseg  24414  stoweidlem11  27421  stoweidlem14  27424  stoweidlem26  27436  stoweidlem44  27454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-addrcl 8977  ax-pre-lttri 8990  ax-pre-ltadd 8992
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-ltxr 9051
  Copyright terms: Public domain W3C validator