MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd2dd Structured version   Unicode version

Theorem ltadd2dd 9222
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
letrd.3  |-  ( ph  ->  C  e.  RR )
ltletrd.4  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltadd2dd  |-  ( ph  ->  ( C  +  A
)  <  ( C  +  B ) )

Proof of Theorem ltadd2dd
StepHypRef Expression
1 ltletrd.4 . 2  |-  ( ph  ->  A  <  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 letrd.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4ltadd2d 9219 . 2  |-  ( ph  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B ) ) )
61, 5mpbid 202 1  |-  ( ph  ->  ( C  +  A
)  <  ( C  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   class class class wbr 4205  (class class class)co 6074   RRcr 8982    + caddc 8986    < clt 9113
This theorem is referenced by:  eirrlem  12796  prmreclem5  13281  iccntr  18845  icccmplem2  18847  ivthlem2  19342  uniioombllem3  19470  opnmbllem  19486  dvcnvre  19896  cosordlem  20426  efif1olem2  20438  atanlogaddlem  20746  pntibndlem2  21278  pntlemr  21289  dya2icoseg  24620  mblfinlem  26235  stoweidlem11  27728  stoweidlem14  27731  stoweidlem26  27743  stoweidlem44  27761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-resscn 9040  ax-addrcl 9044  ax-pre-lttri 9057  ax-pre-ltadd 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-ltxr 9118
  Copyright terms: Public domain W3C validator