MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Unicode version

Theorem ltaddpr 8674
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )

Proof of Theorem ltaddpr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 8629 . . . . 5  |-  ( B  e.  P.  ->  B  =/=  (/) )
2 n0 3477 . . . . 5  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
31, 2sylib 188 . . . 4  |-  ( B  e.  P.  ->  E. y 
y  e.  B )
43adantl 452 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. y  y  e.  B )
5 addclpr 8658 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
65adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( A  +P.  B )  e. 
P. )
7 df-plp 8623 . . . . . . . . . . . . 13  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  +Q  z ) } )
8 addclnq 8585 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
97, 8genpprecl 8641 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) ) )
109imp 418 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) )
11 elprnq 8631 . . . . . . . . . . . . 13  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  +Q  y )  e.  Q. )
12 addnqf 8588 . . . . . . . . . . . . . . 15  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1312fdmi 5410 . . . . . . . . . . . . . 14  |-  dom  +Q  =  ( Q.  X.  Q. )
14 0nnq 8564 . . . . . . . . . . . . . 14  |-  -.  (/)  e.  Q.
1513, 14ndmovrcl 6022 . . . . . . . . . . . . 13  |-  ( ( x  +Q  y )  e.  Q.  ->  (
x  e.  Q.  /\  y  e.  Q. )
)
16 ltaddnq 8614 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  x  <Q  ( x  +Q  y ) )
1711, 15, 163syl 18 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  <Q  (
x  +Q  y ) )
18 prcdnq 8633 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  <Q  ( x  +Q  y )  ->  x  e.  ( A  +P.  B ) ) )
1917, 18mpd 14 . . . . . . . . . . 11  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  e.  ( A  +P.  B ) )
206, 10, 19syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  x  e.  ( A  +P.  B
) )
2120exp32 588 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  x  e.  ( A  +P.  B ) ) ) )
2221com23 72 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  x  e.  ( A  +P.  B ) ) ) )
2322alrimdv 1623 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) ) )
24 dfss2 3182 . . . . . . 7  |-  ( A 
C_  ( A  +P.  B )  <->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) )
2523, 24syl6ibr 218 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C_  ( A  +P.  B ) ) )
26 vex 2804 . . . . . . . . 9  |-  y  e. 
_V
2726prlem934 8673 . . . . . . . 8  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  y )  e.  A )
2827adantr 451 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. x  e.  A  -.  ( x  +Q  y
)  e.  A )
29 eleq2 2357 . . . . . . . . . . . . 13  |-  ( A  =  ( A  +P.  B )  ->  ( (
x  +Q  y )  e.  A  <->  ( x  +Q  y )  e.  ( A  +P.  B ) ) )
3029biimprcd 216 . . . . . . . . . . . 12  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( A  =  ( A  +P.  B )  ->  ( x  +Q  y )  e.  A
) )
3130con3d 125 . . . . . . . . . . 11  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) )
329, 31syl6 29 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) )
3332exp3a 425 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( -.  ( x  +Q  y )  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3433com34 77 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3534rexlimdv 2679 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x  e.  A  -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) )
3628, 35mpd 14 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) )
3725, 36jcad 519 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B ) ) ) )
38 dfpss2 3274 . . . . 5  |-  ( A 
C.  ( A  +P.  B )  <->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B
) ) )
3937, 38syl6ibr 218 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C.  ( A  +P.  B ) ) )
4039exlimdv 1626 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  y  e.  B  ->  A  C.  ( A  +P.  B
) ) )
414, 40mpd 14 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  C.  ( A  +P.  B ) )
42 ltprord 8670 . . 3  |-  ( ( A  e.  P.  /\  ( A  +P.  B )  e.  P. )  -> 
( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
435, 42syldan 456 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
4441, 43mpbird 223 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557    C_ wss 3165    C. wpss 3166   (/)c0 3468   class class class wbr 4039    X. cxp 4703  (class class class)co 5874   Q.cnq 8490    +Q cplq 8493    <Q cltq 8496   P.cnp 8497    +P. cpp 8499    <P cltp 8501
This theorem is referenced by:  ltaddpr2  8675  ltexprlem7  8682  ltaprlem  8684  0lt1sr  8733  mappsrpr  8746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-plp 8623  df-ltp 8625
  Copyright terms: Public domain W3C validator