MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapi Unicode version

Theorem ltapi 8744
Description: Ordering property of addition for positive integers. (Contributed by NM, 7-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapi  |-  ( C  e.  N.  ->  ( A  <N  B  <->  ( C  +N  A )  <N  ( C  +N  B ) ) )

Proof of Theorem ltapi
StepHypRef Expression
1 dmaddpi 8731 . 2  |-  dom  +N  =  ( N.  X.  N. )
2 ltrelpi 8730 . 2  |-  <N  C_  ( N.  X.  N. )
3 0npi 8723 . 2  |-  -.  (/)  e.  N.
4 pinn 8719 . . . . . 6  |-  ( A  e.  N.  ->  A  e.  om )
5 pinn 8719 . . . . . 6  |-  ( B  e.  N.  ->  B  e.  om )
6 pinn 8719 . . . . . 6  |-  ( C  e.  N.  ->  C  e.  om )
7 nnaord 6829 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
84, 5, 6, 7syl3an 1226 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
983expa 1153 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
10 ltpiord 8728 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
1110adantr 452 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
A  e.  B ) )
12 addclpi 8733 . . . . . . . 8  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  +N  A
)  e.  N. )
13 addclpi 8733 . . . . . . . 8  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  +N  B
)  e.  N. )
14 ltpiord 8728 . . . . . . . 8  |-  ( ( ( C  +N  A
)  e.  N.  /\  ( C  +N  B
)  e.  N. )  ->  ( ( C  +N  A )  <N  ( C  +N  B )  <->  ( C  +N  A )  e.  ( C  +N  B ) ) )
1512, 13, 14syl2an 464 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  +N  A )  <N 
( C  +N  B
)  <->  ( C  +N  A )  e.  ( C  +N  B ) ) )
16 addpiord 8725 . . . . . . . . 9  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  +N  A
)  =  ( C  +o  A ) )
1716adantr 452 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  +N  A )  =  ( C  +o  A ) )
18 addpiord 8725 . . . . . . . . 9  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  +N  B
)  =  ( C  +o  B ) )
1918adantl 453 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  +N  B )  =  ( C  +o  B ) )
2017, 19eleq12d 2480 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  +N  A )  e.  ( C  +N  B
)  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
2115, 20bitrd 245 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  +N  A )  <N 
( C  +N  B
)  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
2221anandis 804 . . . . 5  |-  ( ( C  e.  N.  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  +N  A )  <N 
( C  +N  B
)  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
2322ancoms 440 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( C  +N  A )  <N 
( C  +N  B
)  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
249, 11, 233bitr4d 277 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
( C  +N  A
)  <N  ( C  +N  B ) ) )
25243impa 1148 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  +N  A )  <N  ( C  +N  B ) ) )
261, 2, 3, 25ndmovord 6204 1  |-  ( C  e.  N.  ->  ( A  <N  B  <->  ( C  +N  A )  <N  ( C  +N  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4180   omcom 4812  (class class class)co 6048    +o coa 6688   N.cnpi 8683    +N cpli 8684    <N clti 8686
This theorem is referenced by:  ltanq  8812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-recs 6600  df-rdg 6635  df-oadd 6695  df-ni 8713  df-pli 8714  df-lti 8716
  Copyright terms: Public domain W3C validator