MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Unicode version

Theorem ltaprlem 8684
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )

Proof of Theorem ltaprlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 8638 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4753 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 445 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexpri 8683 . . . . 5  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
5 addclpr 8658 . . . . . . . 8  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  e.  P. )
6 ltaddpr 8674 . . . . . . . . . 10  |-  ( ( ( C  +P.  A
)  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x ) )
7 addasspr 8662 . . . . . . . . . . . 12  |-  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) )
8 oveq2 5882 . . . . . . . . . . . 12  |-  ( ( A  +P.  x )  =  B  ->  ( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B
) )
97, 8syl5eq 2340 . . . . . . . . . . 11  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  B ) )
109breq2d 4051 . . . . . . . . . 10  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x )  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
116, 10syl5ib 210 . . . . . . . . 9  |-  ( ( A  +P.  x )  =  B  ->  (
( ( C  +P.  A )  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) )
1211exp3a 425 . . . . . . . 8  |-  ( ( A  +P.  x )  =  B  ->  (
( C  +P.  A
)  e.  P.  ->  ( x  e.  P.  ->  ( C  +P.  A ) 
<P  ( C  +P.  B
) ) ) )
135, 12syl5 28 . . . . . . 7  |-  ( ( A  +P.  x )  =  B  ->  (
( C  e.  P.  /\  A  e.  P. )  ->  ( x  e.  P.  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) ) )
1413com3r 73 . . . . . 6  |-  ( x  e.  P.  ->  (
( A  +P.  x
)  =  B  -> 
( ( C  e. 
P.  /\  A  e.  P. )  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1514rexlimiv 2674 . . . . 5  |-  ( E. x  e.  P.  ( A  +P.  x )  =  B  ->  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
164, 15syl 15 . . . 4  |-  ( A 
<P  B  ->  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) ) )
173, 16sylan2i 636 . . 3  |-  ( A 
<P  B  ->  ( ( C  e.  P.  /\  A  <P  B )  -> 
( C  +P.  A
)  <P  ( C  +P.  B ) ) )
1817exp3a 425 . 2  |-  ( A 
<P  B  ->  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) ) )
1918pm2.43b 46 1  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   P.cnp 8497    +P. cpp 8499    <P cltp 8501
This theorem is referenced by:  ltapr  8685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-plp 8623  df-ltp 8625
  Copyright terms: Public domain W3C validator