MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv23 Unicode version

Theorem ltdiv23 9663
Description: Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.)
Assertion
Ref Expression
ltdiv23  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )

Proof of Theorem ltdiv23
StepHypRef Expression
1 simpl 443 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  e.  RR )
2 gt0ne0 9255 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
31, 2jca 518 . . . . . 6  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( B  e.  RR  /\  B  =/=  0 ) )
4 redivcl 9495 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  /  B )  e.  RR )
543expb 1152 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B  =/=  0 ) )  ->  ( A  /  B )  e.  RR )
63, 5sylan2 460 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  /  B )  e.  RR )
763adant3 975 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( A  /  B )  e.  RR )
8 simp3 957 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  C  e.  RR )
9 simp2 956 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( B  e.  RR  /\  0  < 
B ) )
10 ltmul1 9622 . . . 4  |-  ( ( ( A  /  B
)  e.  RR  /\  C  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <  C  <->  ( ( A  /  B
)  x.  B )  <  ( C  x.  B ) ) )
117, 8, 9, 10syl3anc 1182 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( ( A  /  B )  < 
C  <->  ( ( A  /  B )  x.  B )  <  ( C  x.  B )
) )
12113adant3r 1179 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( ( A  /  B
)  x.  B )  <  ( C  x.  B ) ) )
13 recn 8843 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 451 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  e.  CC )
15 recn 8843 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
1615ad2antrl 708 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  CC )
172adantl 452 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  =/=  0 )
1814, 16, 17divcan1d 9553 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  x.  B )  =  A )
19183adant3 975 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  x.  B
)  =  A )
2019breq1d 4049 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( ( A  /  B )  x.  B )  <  ( C  x.  B )  <->  A  <  ( C  x.  B ) ) )
21 remulcl 8838 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  x.  B
)  e.  RR )
2221ancoms 439 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  x.  B
)  e.  RR )
2322adantrr 697 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( C  x.  B )  e.  RR )
24233adant1 973 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( C  x.  B
)  e.  RR )
25 ltdiv1 9636 . . . . 5  |-  ( ( A  e.  RR  /\  ( C  x.  B
)  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  ( C  x.  B
)  <->  ( A  /  C )  <  (
( C  x.  B
)  /  C ) ) )
2624, 25syld3an2 1229 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  ( C  x.  B )  <->  ( A  /  C )  <  ( ( C  x.  B )  /  C ) ) )
27 recn 8843 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  CC )
2827adantr 451 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  e.  CC )
29 gt0ne0 9255 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
3028, 29jca 518 . . . . . . 7  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( C  e.  CC  /\  C  =/=  0 ) )
31 divcan3 9464 . . . . . . . 8  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  (
( C  x.  B
)  /  C )  =  B )
32313expb 1152 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( C  x.  B )  /  C )  =  B )
3315, 30, 32syl2an 463 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  B )  /  C )  =  B )
34333adant1 973 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  B )  /  C
)  =  B )
3534breq2d 4051 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <  (
( C  x.  B
)  /  C )  <-> 
( A  /  C
)  <  B )
)
3626, 35bitrd 244 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  ( C  x.  B )  <->  ( A  /  C )  <  B ) )
37363adant2r 1177 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A  <  ( C  x.  B )  <->  ( A  /  C )  <  B ) )
3812, 20, 373bitrd 270 1  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    x. cmul 8758    < clt 8883    / cdiv 9439
This theorem is referenced by:  ltdiv23i  9697  ltdiv23d  10462  divrcnv  12327  prmind2  12785  lebnumii  18480  bposlem2  20540  pntibndlem1  20754  stoweidlem7  27859  stirlinglem6  27931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440
  Copyright terms: Public domain W3C validator