MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv23 Unicode version

Theorem ltdiv23 9647
Description: Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.)
Assertion
Ref Expression
ltdiv23  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )

Proof of Theorem ltdiv23
StepHypRef Expression
1 simpl 443 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  e.  RR )
2 gt0ne0 9239 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
31, 2jca 518 . . . . . 6  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( B  e.  RR  /\  B  =/=  0 ) )
4 redivcl 9479 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  /  B )  e.  RR )
543expb 1152 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B  =/=  0 ) )  ->  ( A  /  B )  e.  RR )
63, 5sylan2 460 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  /  B )  e.  RR )
763adant3 975 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( A  /  B )  e.  RR )
8 simp3 957 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  C  e.  RR )
9 simp2 956 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( B  e.  RR  /\  0  < 
B ) )
10 ltmul1 9606 . . . 4  |-  ( ( ( A  /  B
)  e.  RR  /\  C  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <  C  <->  ( ( A  /  B
)  x.  B )  <  ( C  x.  B ) ) )
117, 8, 9, 10syl3anc 1182 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( ( A  /  B )  < 
C  <->  ( ( A  /  B )  x.  B )  <  ( C  x.  B )
) )
12113adant3r 1179 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( ( A  /  B
)  x.  B )  <  ( C  x.  B ) ) )
13 recn 8827 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 451 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  e.  CC )
15 recn 8827 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
1615ad2antrl 708 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  CC )
172adantl 452 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  =/=  0 )
1814, 16, 17divcan1d 9537 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  x.  B )  =  A )
19183adant3 975 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  x.  B
)  =  A )
2019breq1d 4033 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( ( A  /  B )  x.  B )  <  ( C  x.  B )  <->  A  <  ( C  x.  B ) ) )
21 remulcl 8822 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  x.  B
)  e.  RR )
2221ancoms 439 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  x.  B
)  e.  RR )
2322adantrr 697 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( C  x.  B )  e.  RR )
24233adant1 973 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( C  x.  B
)  e.  RR )
25 ltdiv1 9620 . . . . 5  |-  ( ( A  e.  RR  /\  ( C  x.  B
)  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  ( C  x.  B
)  <->  ( A  /  C )  <  (
( C  x.  B
)  /  C ) ) )
2624, 25syld3an2 1229 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  ( C  x.  B )  <->  ( A  /  C )  <  ( ( C  x.  B )  /  C ) ) )
27 recn 8827 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  CC )
2827adantr 451 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  e.  CC )
29 gt0ne0 9239 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
3028, 29jca 518 . . . . . . 7  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( C  e.  CC  /\  C  =/=  0 ) )
31 divcan3 9448 . . . . . . . 8  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  (
( C  x.  B
)  /  C )  =  B )
32313expb 1152 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( C  x.  B )  /  C )  =  B )
3315, 30, 32syl2an 463 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  B )  /  C )  =  B )
34333adant1 973 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  B )  /  C
)  =  B )
3534breq2d 4035 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <  (
( C  x.  B
)  /  C )  <-> 
( A  /  C
)  <  B )
)
3626, 35bitrd 244 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  ( C  x.  B )  <->  ( A  /  C )  <  B ) )
37363adant2r 1177 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A  <  ( C  x.  B )  <->  ( A  /  C )  <  B ) )
3812, 20, 373bitrd 270 1  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867    / cdiv 9423
This theorem is referenced by:  ltdiv23i  9681  ltdiv23d  10446  divrcnv  12311  prmind2  12769  lebnumii  18464  bposlem2  20524  pntibndlem1  20738  stoweidlem7  27756  stirlinglem6  27828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424
  Copyright terms: Public domain W3C validator