MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltneii Structured version   Unicode version

Theorem ltneii 9178
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
ltneii.2  |-  A  < 
B
Assertion
Ref Expression
ltneii  |-  A  =/= 
B

Proof of Theorem ltneii
StepHypRef Expression
1 lt.1 . . 3  |-  A  e.  RR
2 ltneii.2 . . 3  |-  A  < 
B
31, 2gtneii 9177 . 2  |-  B  =/= 
A
43necomi 2680 1  |-  A  =/= 
B
Colors of variables: wff set class
Syntax hints:    e. wcel 1725    =/= wne 2598   class class class wbr 4204   RRcr 8981    < clt 9112
This theorem is referenced by:  1ne2  10179  f1oun2prg  11856  geo2sum  12642  3dvds  12904  oppchomfval  13932  oppcbas  13936  rescbas  14021  rescabs  14025  odubas  14552  opprlem  15725  srasca  16245  opsrbaslem  16530  zlmlem  16790  zlmsca  16794  znbaslem  16811  thlbas  16915  thlle  16916  tuslem  18289  setsmsbas  18497  tnglem  18673  ppiub  20980  usgraexmpldifpr  21411  constr3lem4  21626  constr3trllem3  21631  konigsberg  21701  ex-dif  21723  ex-id  21734  ex-fv  21743  rabren3dioph  26867  matbas  27436  matplusg  27437  2p2ne5  28473  hlhilslem  32676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-ltxr 9117
  Copyright terms: Public domain W3C validator