MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltprord Unicode version

Theorem ltprord 8654
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltprord  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B ) )

Proof of Theorem ltprord
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . . . . 5  |-  ( x  =  A  ->  (
x  e.  P.  <->  A  e.  P. ) )
21anbi1d 685 . . . 4  |-  ( x  =  A  ->  (
( x  e.  P.  /\  y  e.  P. )  <->  ( A  e.  P.  /\  y  e.  P. )
) )
3 psseq1 3263 . . . 4  |-  ( x  =  A  ->  (
x  C.  y  <->  A  C.  y ) )
42, 3anbi12d 691 . . 3  |-  ( x  =  A  ->  (
( ( x  e. 
P.  /\  y  e.  P. )  /\  x  C.  y )  <->  ( ( A  e.  P.  /\  y  e.  P. )  /\  A  C.  y ) ) )
5 eleq1 2343 . . . . 5  |-  ( y  =  B  ->  (
y  e.  P.  <->  B  e.  P. ) )
65anbi2d 684 . . . 4  |-  ( y  =  B  ->  (
( A  e.  P.  /\  y  e.  P. )  <->  ( A  e.  P.  /\  B  e.  P. )
) )
7 psseq2 3264 . . . 4  |-  ( y  =  B  ->  ( A  C.  y  <->  A  C.  B ) )
86, 7anbi12d 691 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
P.  /\  y  e.  P. )  /\  A  C.  y )  <->  ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B ) ) )
9 df-ltp 8609 . . 3  |-  <P  =  { <. x ,  y
>.  |  ( (
x  e.  P.  /\  y  e.  P. )  /\  x  C.  y ) }
104, 8, 9brabg 4284 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B ) ) )
1110bianabs 850 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    C. wpss 3153   class class class wbr 4023   P.cnp 8481    <P cltp 8485
This theorem is referenced by:  ltsopr  8656  ltaddpr  8658  ltexprlem7  8666  ltexpri  8667  suplem1pr  8676  suplem2pr  8677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-ltp 8609
  Copyright terms: Public domain W3C validator