MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrec Unicode version

Theorem ltrec 9880
Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltrec  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <  B  <->  ( 1  /  B )  <  ( 1  /  A ) ) )

Proof of Theorem ltrec
StepHypRef Expression
1 1re 9079 . . . . 5  |-  1  e.  RR
21a1i 11 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
1  e.  RR )
3 simprl 733 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  B  e.  RR )
4 simpll 731 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  A  e.  RR )
5 simplr 732 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  A )
6 ltmuldiv 9869 . . . 4  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
72, 3, 4, 5, 6syl112anc 1188 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
84recnd 9103 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  A  e.  CC )
98mulid2d 9095 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  x.  A
)  =  A )
109breq1d 4214 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  x.  A )  <  B  <->  A  <  B ) )
113recnd 9103 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  B  e.  CC )
125gt0ne0d 9580 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  A  =/=  0 )
1311, 8, 12divrecd 9782 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( B  /  A
)  =  ( B  x.  ( 1  /  A ) ) )
1413breq2d 4216 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  <  ( B  /  A )  <->  1  <  ( B  x.  ( 1  /  A ) ) ) )
157, 10, 143bitr3d 275 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <  B  <->  1  <  ( B  x.  ( 1  /  A
) ) ) )
164, 12rereccld 9830 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  /  A
)  e.  RR )
17 simprr 734 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  B )
18 ltdivmul 9871 . . 3  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( (
1  /  B )  <  ( 1  /  A )  <->  1  <  ( B  x.  ( 1  /  A ) ) ) )
192, 16, 3, 17, 18syl112anc 1188 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  B )  <  (
1  /  A )  <->  1  <  ( B  x.  ( 1  /  A ) ) ) )
2015, 19bitr4d 248 1  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <  B  <->  ( 1  /  B )  <  ( 1  /  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   class class class wbr 4204  (class class class)co 6072   RRcr 8978   0cc0 8979   1c1 8980    x. cmul 8984    < clt 9109    / cdiv 9666
This theorem is referenced by:  lerec  9881  ltdiv2  9884  ltrec1  9886  reclt1  9894  recgt1  9895  ltreci  9910  nnrecl  10208  ltrecd  10655  chebbnd1  21154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667
  Copyright terms: Public domain W3C validator