Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Unicode version

Theorem ltrelpi 8758
 Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 8744 . 2
2 inss2 3554 . 2
31, 2eqsstri 3370 1
 Colors of variables: wff set class Syntax hints:   cin 3311   wss 3312   cep 4484   cxp 4868  cnpi 8711   clti 8714 This theorem is referenced by:  ltapi  8772  ltmpi  8773  nlt1pi  8775  indpi  8776  ordpipq  8811  ltsonq  8838  archnq  8849 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-in 3319  df-ss 3326  df-lti 8744
 Copyright terms: Public domain W3C validator