Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpr Structured version   Unicode version

Theorem ltrelpr 8867
 Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpr

Proof of Theorem ltrelpr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltp 8854 . 2
2 opabssxp 4942 . 2
31, 2eqsstri 3370 1
 Colors of variables: wff set class Syntax hints:   wa 359   wcel 1725   wss 3312   wpss 3313  copab 4257   cxp 4868  cnp 8726   cltp 8730 This theorem is referenced by:  ltexpri  8912  ltaprlem  8913  ltapr  8914  suplem1pr  8921  suplem2pr  8922  supexpr  8923  ltsrpr  8944  ltsosr  8961  mappsrpr  8975 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-in 3319  df-ss 3326  df-opab 4259  df-xp 4876  df-ltp 8854
 Copyright terms: Public domain W3C validator