MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelre Unicode version

Theorem ltrelre 8756
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelre  |-  <RR  C_  ( RR  X.  RR )

Proof of Theorem ltrelre
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 8750 . 2  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
2 opabssxp 4762 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }  C_  ( RR  X.  RR )
31, 2eqsstri 3208 1  |-  <RR  C_  ( RR  X.  RR )
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    C_ wss 3152   <.cop 3643   class class class wbr 4023   {copab 4076    X. cxp 4687   0Rc0r 8490    <R cltr 8495   RRcr 8736    <RR cltrr 8741
This theorem is referenced by:  ltresr  8762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-in 3159  df-ss 3166  df-opab 4078  df-xp 4695  df-lt 8750
  Copyright terms: Public domain W3C validator