MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelxr Unicode version

Theorem ltrelxr 8886
Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr  |-  <  C_  ( RR*  X.  RR* )

Proof of Theorem ltrelxr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 8872 . 2  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) )
2 df-3an 936 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
32opabbii 4083 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4 opabssxp 4762 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
53, 4eqsstri 3208 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
6 ressxr 8876 . . . . 5  |-  RR  C_  RR*
7 xpss12 4792 . . . . 5  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
86, 6, 7mp2an 653 . . . 4  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
95, 8sstri 3188 . . 3  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR*  X.  RR* )
10 snsspr2 3765 . . . . . . 7  |-  {  -oo } 
C_  {  +oo ,  -oo }
11 ssun2 3339 . . . . . . . 8  |-  {  +oo , 
-oo }  C_  ( RR  u.  {  +oo ,  -oo } )
12 df-xr 8871 . . . . . . . 8  |-  RR*  =  ( RR  u.  {  +oo , 
-oo } )
1311, 12sseqtr4i 3211 . . . . . . 7  |-  {  +oo , 
-oo }  C_  RR*
1410, 13sstri 3188 . . . . . 6  |-  {  -oo } 
C_  RR*
156, 14unssi 3350 . . . . 5  |-  ( RR  u.  {  -oo }
)  C_  RR*
16 snsspr1 3764 . . . . . 6  |-  {  +oo } 
C_  {  +oo ,  -oo }
1716, 13sstri 3188 . . . . 5  |-  {  +oo } 
C_  RR*
18 xpss12 4792 . . . . 5  |-  ( ( ( RR  u.  {  -oo } )  C_  RR*  /\  {  +oo }  C_  RR* )  -> 
( ( RR  u.  { 
-oo } )  X.  {  +oo } )  C_  ( RR*  X.  RR* ) )
1915, 17, 18mp2an 653 . . . 4  |-  ( ( RR  u.  {  -oo } )  X.  {  +oo } )  C_  ( RR*  X. 
RR* )
20 xpss12 4792 . . . . 5  |-  ( ( {  -oo }  C_  RR* 
/\  RR  C_  RR* )  ->  ( {  -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )
2114, 6, 20mp2an 653 . . . 4  |-  ( { 
-oo }  X.  RR )  C_  ( RR*  X.  RR* )
2219, 21unssi 3350 . . 3  |-  ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) )  C_  ( RR*  X.  RR* )
239, 22unssi 3350 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) )  C_  ( RR*  X.  RR* )
241, 23eqsstri 3208 1  |-  <  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    e. wcel 1684    u. cun 3150    C_ wss 3152   {csn 3640   {cpr 3641   class class class wbr 4023   {copab 4076    X. cxp 4687   RRcr 8736    <RR cltrr 8741    +oocpnf 8864    -oocmnf 8865   RR*cxr 8866    < clt 8867
This theorem is referenced by:  ltrel  8887  dfle2  10481  dflt2  10482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166  df-pr 3647  df-opab 4078  df-xp 4695  df-xr 8871  df-ltxr 8872
  Copyright terms: Public domain W3C validator