MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltresr Structured version   Unicode version

Theorem ltresr 9017
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltresr  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )

Proof of Theorem ltresr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 9011 . . . 4  |-  <RR  C_  ( RR  X.  RR )
21brel 4928 . . 3  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( <. A ,  0R >.  e.  RR  /\ 
<. B ,  0R >.  e.  RR ) )
3 opelreal 9007 . . . 4  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
4 opelreal 9007 . . . 4  |-  ( <. B ,  0R >.  e.  RR  <->  B  e.  R. )
53, 4anbi12i 680 . . 3  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  <-> 
( A  e.  R.  /\  B  e.  R. )
)
62, 5sylib 190 . 2  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( A  e.  R.  /\  B  e. 
R. ) )
7 ltrelsr 8948 . . 3  |-  <R  C_  ( R.  X.  R. )
87brel 4928 . 2  |-  ( A 
<R  B  ->  ( A  e.  R.  /\  B  e.  R. ) )
9 opex 4429 . . . . . . 7  |-  <. A ,  0R >.  e.  _V
10 opex 4429 . . . . . . 7  |-  <. B ,  0R >.  e.  _V
11 eleq1 2498 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( x  e.  RR  <->  <. A ,  0R >.  e.  RR ) )
1211anbi1d 687 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  e.  RR  /\  y  e.  RR )  <->  ( <. A ,  0R >.  e.  RR  /\  y  e.  RR ) ) )
13 eqeq1 2444 . . . . . . . . . . 11  |-  ( x  =  <. A ,  0R >.  ->  ( x  = 
<. z ,  0R >.  <->  <. A ,  0R >.  =  <. z ,  0R >. )
)
1413anbi1d 687 . . . . . . . . . 10  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. ) ) )
1514anbi1d 687 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
16152exbidv 1639 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
1712, 16anbi12d 693 . . . . . . 7  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
18 eleq1 2498 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( y  e.  RR  <->  <. B ,  0R >.  e.  RR ) )
1918anbi2d 686 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  <-> 
( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR ) ) )
20 eqeq1 2444 . . . . . . . . . . 11  |-  ( y  =  <. B ,  0R >.  ->  ( y  = 
<. w ,  0R >.  <->  <. B ,  0R >.  =  <. w ,  0R >. )
)
2120anbi2d 686 . . . . . . . . . 10  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. ) ) )
2221anbi1d 687 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  /\  z  <R  w
) ) )
23222exbidv 1639 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2419, 23anbi12d 693 . . . . . . 7  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
25 df-lt 9005 . . . . . . 7  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
269, 10, 17, 24, 25brab 4479 . . . . . 6  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2726baib 873 . . . . 5  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
28 vex 2961 . . . . . . . . . . 11  |-  z  e. 
_V
2928eqresr 9014 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  = 
<. A ,  0R >.  <->  z  =  A )
30 eqcom 2440 . . . . . . . . . 10  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  <. z ,  0R >.  =  <. A ,  0R >. )
31 eqcom 2440 . . . . . . . . . 10  |-  ( A  =  z  <->  z  =  A )
3229, 30, 313bitr4i 270 . . . . . . . . 9  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  A  =  z )
33 vex 2961 . . . . . . . . . . 11  |-  w  e. 
_V
3433eqresr 9014 . . . . . . . . . 10  |-  ( <.
w ,  0R >.  = 
<. B ,  0R >.  <->  w  =  B )
35 eqcom 2440 . . . . . . . . . 10  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  <. w ,  0R >.  =  <. B ,  0R >. )
36 eqcom 2440 . . . . . . . . . 10  |-  ( B  =  w  <->  w  =  B )
3734, 35, 363bitr4i 270 . . . . . . . . 9  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  B  =  w )
3832, 37anbi12i 680 . . . . . . . 8  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <-> 
( A  =  z  /\  B  =  w ) )
3928, 33opth2 4440 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. z ,  w >.  <->  ( A  =  z  /\  B  =  w )
)
4038, 39bitr4i 245 . . . . . . 7  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <->  <. A ,  B >.  = 
<. z ,  w >. )
4140anbi1i 678 . . . . . 6  |-  ( ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
42412exbii 1594 . . . . 5  |-  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
4327, 42syl6bb 254 . . . 4  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
443, 4, 43syl2anbr 468 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
45 breq12 4219 . . . 4  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z  <R  w  <->  A 
<R  B ) )
4645copsex2g 4446 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w )  <->  A  <R  B ) )
4744, 46bitrd 246 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <-> 
A  <R  B ) )
486, 8, 47pm5.21nii 344 1  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   <.cop 3819   class class class wbr 4214   R.cnr 8744   0Rc0r 8745    <R cltr 8750   RRcr 8991    <RR cltrr 8996
This theorem is referenced by:  ltresr2  9018  axpre-lttri  9042  axpre-lttrn  9043  axpre-ltadd  9044  axpre-mulgt0  9045  axpre-sup  9046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-ni 8751  df-pli 8752  df-mi 8753  df-lti 8754  df-plpq 8787  df-mpq 8788  df-ltpq 8789  df-enq 8790  df-nq 8791  df-erq 8792  df-plq 8793  df-mq 8794  df-1nq 8795  df-rq 8796  df-ltnq 8797  df-np 8860  df-1p 8861  df-enr 8936  df-nr 8937  df-ltr 8940  df-0r 8941  df-r 9002  df-lt 9005
  Copyright terms: Public domain W3C validator