Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatneq Unicode version

Theorem ltrnatneq 30298
Description: If any atom (under  W) is not equal to its translation, so is any other atom. TODO:  -.  P  .<_  W isn't needed to prove this. Will removing it shorten (and not lengthen) proofs using it? (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
ltrn2eq.l  |-  .<_  =  ( le `  K )
ltrn2eq.a  |-  A  =  ( Atoms `  K )
ltrn2eq.h  |-  H  =  ( LHyp `  K
)
ltrn2eq.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnatneq  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( F `  Q )  =/=  Q )

Proof of Theorem ltrnatneq
StepHypRef Expression
1 ltrn2eq.l . . . 4  |-  .<_  =  ( le `  K )
2 ltrn2eq.a . . . 4  |-  A  =  ( Atoms `  K )
3 ltrn2eq.h . . . 4  |-  H  =  ( LHyp `  K
)
4 ltrn2eq.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
51, 2, 3, 4ltrn2ateq 30296 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( F `  P
)  =  P  <->  ( F `  Q )  =  Q ) )
65necon3bid 2587 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( F `  P
)  =/=  P  <->  ( F `  Q )  =/=  Q
) )
76biimp3a 1283 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( F `  Q )  =/=  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   class class class wbr 4155   ` cfv 5396   lecple 13465   Atomscatm 29380   HLchlt 29467   LHypclh 30100   LTrncltrn 30217
This theorem is referenced by:  ltrnatlw  30299  cdlemg13  30768  cdlemg17i  30785  cdlemg17pq  30788  cdlemg19  30800  cdlemg21  30802
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-map 6958  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275
  Copyright terms: Public domain W3C validator