Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvnid Unicode version

Theorem ltrncnvnid 30241
Description: If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
ltrn1o.b  |-  B  =  ( Base `  K
)
ltrn1o.h  |-  H  =  ( LHyp `  K
)
ltrn1o.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncnvnid  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' F  =/=  (  _I  |`  B ) )

Proof of Theorem ltrncnvnid
StepHypRef Expression
1 simp3 959 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  F  =/=  (  _I  |`  B ) )
2 ltrn1o.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
3 ltrn1o.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
4 ltrn1o.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrn1o 30238 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
653adant3 977 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  F : B -1-1-onto-> B
)
7 f1orel 5617 . . . . . . . 8  |-  ( F : B -1-1-onto-> B  ->  Rel  F )
86, 7syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  Rel  F )
9 dfrel2 5261 . . . . . . 7  |-  ( Rel 
F  <->  `' `' F  =  F
)
108, 9sylib 189 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' `' F  =  F )
11 cnveq 4986 . . . . . 6  |-  ( `' F  =  (  _I  |`  B )  ->  `' `' F  =  `' (  _I  |`  B ) )
1210, 11sylan9req 2440 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  `' F  =  (  _I  |`  B ) )  ->  F  =  `' (  _I  |`  B ) )
13 cnvresid 5463 . . . . 5  |-  `' (  _I  |`  B )  =  (  _I  |`  B )
1412, 13syl6eq 2435 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  `' F  =  (  _I  |`  B ) )  ->  F  =  (  _I  |`  B ) )
1514ex 424 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( `' F  =  (  _I  |`  B )  ->  F  =  (  _I  |`  B )
) )
1615necon3d 2588 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( F  =/=  (  _I  |`  B )  ->  `' F  =/=  (  _I  |`  B ) ) )
171, 16mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' F  =/=  (  _I  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550    _I cid 4434   `'ccnv 4817    |` cres 4820   Rel wrel 4823   -1-1-onto->wf1o 5393   ` cfv 5394   Basecbs 13396   HLchlt 29465   LHypclh 30098   LTrncltrn 30215
This theorem is referenced by:  cdlemh2  30930  cdlemh  30931  cdlemkfid1N  31035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-map 6956  df-laut 30103  df-ldil 30218  df-ltrn 30219
  Copyright terms: Public domain W3C validator