Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoat Unicode version

Theorem ltrncoat 30955
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 30950, ltrnat 30951 uses. (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncoat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )

Proof of Theorem ltrncoat
StepHypRef Expression
1 simp1 955 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  F  e.  T )
3 ltrnel.l . . . 4  |-  .<_  =  ( le `  K )
4 ltrnel.a . . . 4  |-  A  =  ( Atoms `  K )
5 ltrnel.h . . . 4  |-  H  =  ( LHyp `  K
)
6 ltrnel.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
73, 4, 5, 6ltrnat 30951 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
873adant2l 1176 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( G `  P )  e.  A )
93, 4, 5, 6ltrnat 30951 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( G `  P
)  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )
101, 2, 8, 9syl3anc 1182 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271   lecple 13231   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912
This theorem is referenced by:  cdlemg9a  31443  cdlemg9  31445  cdlemg11aq  31449  cdlemg12a  31454  cdlemg12c  31456  cdlemg12f  31459  cdlemg12g  31460  cdlemg12  31461  cdlemg13a  31462  cdlemg13  31463  cdlemg17f  31477  cdlemg17g  31478  cdlemg17  31488  cdlemg19a  31494  cdlemg19  31495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-undef 6314  df-riota 6320  df-map 6790  df-plt 14108  df-glb 14125  df-p0 14161  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-hlat 30163  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916
  Copyright terms: Public domain W3C validator