Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoval Unicode version

Theorem ltrncoval 30259
Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncoval  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )

Proof of Theorem ltrncoval
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  G  e.  T )
3 eqid 2387 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 ltrnel.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 ltrnel.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5ltrn1o 30238 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
71, 2, 6syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  G : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
8 f1of 5614 . . 3  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
97, 8syl 16 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  G : ( Base `  K
) --> ( Base `  K
) )
10 ltrnel.a . . . 4  |-  A  =  ( Atoms `  K )
113, 10atbase 29404 . . 3  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
12113ad2ant3 980 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  P  e.  ( Base `  K
) )
13 fvco3 5739 . 2  |-  ( ( G : ( Base `  K ) --> ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )
149, 12, 13syl2anc 643 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( F  o.  G
) `  P )  =  ( F `  ( G `  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    o. ccom 4822   -->wf 5390   -1-1-onto->wf1o 5393   ` cfv 5394   Basecbs 13396   lecple 13463   Atomscatm 29378   HLchlt 29465   LHypclh 30098   LTrncltrn 30215
This theorem is referenced by:  cdlemg41  30832  trlcoabs  30835  trlcoabs2N  30836  trlcolem  30840  cdlemg44  30847  cdlemi2  30933  cdlemk2  30946  cdlemk4  30948  cdlemk8  30952  dia2dimlem4  31182  dihjatcclem3  31535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-map 6956  df-ats 29382  df-laut 30103  df-ldil 30218  df-ltrn 30219
  Copyright terms: Public domain W3C validator