Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Unicode version

Theorem ltrnel 30328
Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnel  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 983 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
2 eqid 2283 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
3 ltrnel.a . . . . . 6  |-  A  =  ( Atoms `  K )
42, 3atbase 29479 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
54adantr 451 . . . 4  |-  ( ( P  e.  A  /\  -.  P  .<_  W )  ->  P  e.  (
Base `  K )
)
6 ltrnel.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 ltrnel.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
82, 3, 6, 7ltrnatb 30326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
95, 8syl3an3 1217 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  e.  A  <->  ( F `  P )  e.  A
) )
101, 9mpbid 201 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
11 simp3r 984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
12 simp1 955 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp2 956 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
141, 4syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
15 simp1r 980 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
162, 6lhpbase 30187 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1715, 16syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
18 ltrnel.l . . . . . 6  |-  .<_  =  ( le `  K )
192, 18, 6, 7ltrnle 30318 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  ( F `
 W ) ) )
2012, 13, 14, 17, 19syl112anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  ( F `
 W ) ) )
21 simp1l 979 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
22 hllat 29553 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
2321, 22syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
242, 18latref 14159 . . . . . . 7  |-  ( ( K  e.  Lat  /\  W  e.  ( Base `  K ) )  ->  W  .<_  W )
2523, 17, 24syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  .<_  W )
262, 18, 6, 7ltrnval1 30323 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( W  e.  (
Base `  K )  /\  W  .<_  W ) )  ->  ( F `  W )  =  W )
2712, 13, 17, 25, 26syl112anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  W )  =  W )
2827breq2d 4035 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .<_  ( F `  W
)  <->  ( F `  P )  .<_  W ) )
2920, 28bitrd 244 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .<_  W  <->  ( F `  P )  .<_  W ) )
3011, 29mtbid 291 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  ( F `  P )  .<_  W )
3110, 30jca 518 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290
This theorem is referenced by:  ltrncoelN  30332  trlcnv  30354  trljat2  30356  cdlemc3  30382  cdlemc5  30384  cdlemd9  30395  cdlemeiota  30774  cdlemg1cex  30777  cdlemg2l  30792  cdlemg2m  30793  cdlemg7fvbwN  30796  cdlemg4a  30797  cdlemg4b1  30798  cdlemg4b2  30799  cdlemg4d  30802  cdlemg4e  30803  cdlemg4  30806  cdlemg6e  30811  cdlemg7fvN  30813  cdlemg8b  30817  cdlemg8c  30818  cdlemg10bALTN  30825  cdlemg10a  30829  cdlemg12d  30835  cdlemg13a  30840  cdlemg13  30841  cdlemg14f  30842  cdlemg17b  30851  cdlemg17f  30855  cdlemg17i  30858  trlcoabs  30910  trlcoabs2N  30911  trlcolem  30915  cdlemg43  30919  cdlemg44b  30921  cdlemi2  31008  cdlemi  31009  cdlemk2  31021  cdlemk3  31022  cdlemk4  31023  cdlemk8  31027  cdlemk9  31028  cdlemk9bN  31029  cdlemki  31030  cdlemksv2  31036  cdlemk12  31039  cdlemkoatnle  31040  cdlemk12u  31061  cdlemkfid1N  31110  cdlemk47  31138  dia2dimlem1  31254  dia2dimlem2  31255  dia2dimlem3  31256  dia2dimlem6  31259  cdlemm10N  31308  dih1dimatlem0  31518  dih1dimatlem  31519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-glb 14109  df-p0 14145  df-lat 14152  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294
  Copyright terms: Public domain W3C validator