Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq2 Unicode version

Theorem ltrneq2 30337
Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
ltrneq2.a  |-  A  =  ( Atoms `  K )
ltrneq2.h  |-  H  =  ( LHyp `  K
)
ltrneq2.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrneq2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  <->  F  =  G ) )
Distinct variable groups:    A, p    F, p    G, p
Allowed substitution hints:    T( p)    H( p)    K( p)    W( p)

Proof of Theorem ltrneq2
Dummy variables  q  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  G  e.  T )
3 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
4 ltrneq2.h . . . . . . . . . . . . . . 15  |-  H  =  ( LHyp `  K
)
5 ltrneq2.t . . . . . . . . . . . . . . 15  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5ltrn1o 30313 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
71, 2, 6syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  G : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
8 simpl2 959 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  F  e.  T )
9 simpr3 963 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
q  e.  A )
10 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( le
`  K )  =  ( le `  K
)
11 ltrneq2.a . . . . . . . . . . . . . . . 16  |-  A  =  ( Atoms `  K )
1210, 11, 4, 5ltrncnvat 30330 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  q  e.  A
)  ->  ( `' F `  q )  e.  A )
131, 8, 9, 12syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  q )  e.  A
)
143, 11atbase 29479 . . . . . . . . . . . . . 14  |-  ( ( `' F `  q )  e.  A  ->  ( `' F `  q )  e.  ( Base `  K
) )
1513, 14syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  q )  e.  (
Base `  K )
)
16 f1ocnvfv1 5792 . . . . . . . . . . . . 13  |-  ( ( G : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  ( `' F `  q )  e.  ( Base `  K
) )  ->  ( `' G `  ( G `
 ( `' F `  q ) ) )  =  ( `' F `  q ) )
177, 15, 16syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' G `  ( G `  ( `' F `  q ) ) )  =  ( `' F `  q ) )
18 simpr2 962 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  A. p  e.  A  ( F `  p )  =  ( G `  p ) )
19 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( `' F `  q )  ->  ( F `  p )  =  ( F `  ( `' F `  q ) ) )
20 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( `' F `  q )  ->  ( G `  p )  =  ( G `  ( `' F `  q ) ) )
2119, 20eqeq12d 2297 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( `' F `  q )  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  ( `' F `  q ) )  =  ( G `  ( `' F `  q ) ) ) )
2221rspcv 2880 . . . . . . . . . . . . . . 15  |-  ( ( `' F `  q )  e.  A  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  ( F `  ( `' F `  q )
)  =  ( G `
 ( `' F `  q ) ) ) )
2313, 18, 22sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( F `  ( `' F `  q ) )  =  ( G `
 ( `' F `  q ) ) )
243, 4, 5ltrn1o 30313 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
251, 8, 24syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  F : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
263, 11atbase 29479 . . . . . . . . . . . . . . . 16  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
279, 26syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
q  e.  ( Base `  K ) )
28 f1ocnvfv2 5793 . . . . . . . . . . . . . . 15  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  q  e.  ( Base `  K )
)  ->  ( F `  ( `' F `  q ) )  =  q )
2925, 27, 28syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( F `  ( `' F `  q ) )  =  q )
3023, 29eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( G `  ( `' F `  q ) )  =  q )
3130fveq2d 5529 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' G `  ( G `  ( `' F `  q ) ) )  =  ( `' G `  q ) )
3217, 31eqtr3d 2317 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  q )  =  ( `' G `  q ) )
3332breq1d 4033 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' F `  q ) ( le
`  K ) x  <-> 
( `' G `  q ) ( le
`  K ) x ) )
34 simpr1 961 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  x  e.  ( Base `  K ) )
35 f1ocnvfv1 5792 . . . . . . . . . . . 12  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( `' F `  ( F `  x ) )  =  x )
3625, 34, 35syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  ( F `  x ) )  =  x )
3736breq2d 4035 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) )  <-> 
( `' F `  q ) ( le
`  K ) x ) )
38 f1ocnvfv1 5792 . . . . . . . . . . . 12  |-  ( ( G : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( `' G `  ( G `  x ) )  =  x )
397, 34, 38syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' G `  ( G `  x ) )  =  x )
4039breq2d 4035 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) )  <-> 
( `' G `  q ) ( le
`  K ) x ) )
4133, 37, 403bitr4d 276 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) )  <-> 
( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) ) ) )
42 simpl1l 1006 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  K  e.  HL )
43 eqid 2283 . . . . . . . . . . . 12  |-  ( LAut `  K )  =  (
LAut `  K )
444, 43, 5ltrnlaut 30312 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F  e.  ( LAut `  K )
)
451, 8, 44syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  F  e.  ( LAut `  K ) )
463, 4, 5ltrncl 30314 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  x  e.  ( Base `  K ) )  ->  ( F `  x )  e.  (
Base `  K )
)
471, 8, 34, 46syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( F `  x
)  e.  ( Base `  K ) )
483, 10, 43lautcnvle 30278 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  F  e.  ( LAut `  K ) )  /\  ( q  e.  (
Base `  K )  /\  ( F `  x
)  e.  ( Base `  K ) ) )  ->  ( q ( le `  K ) ( F `  x
)  <->  ( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) ) ) )
4942, 45, 27, 47, 48syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( q ( le
`  K ) ( F `  x )  <-> 
( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) ) ) )
504, 43, 5ltrnlaut 30312 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G  e.  ( LAut `  K )
)
511, 2, 50syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  G  e.  ( LAut `  K ) )
523, 4, 5ltrncl 30314 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  x  e.  ( Base `  K ) )  ->  ( G `  x )  e.  (
Base `  K )
)
531, 2, 34, 52syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( G `  x
)  e.  ( Base `  K ) )
543, 10, 43lautcnvle 30278 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  G  e.  ( LAut `  K ) )  /\  ( q  e.  (
Base `  K )  /\  ( G `  x
)  e.  ( Base `  K ) ) )  ->  ( q ( le `  K ) ( G `  x
)  <->  ( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) ) ) )
5542, 51, 27, 53, 54syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( q ( le
`  K ) ( G `  x )  <-> 
( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) ) ) )
5641, 49, 553bitr4d 276 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) ) )
57563exp2 1169 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( x  e.  ( Base `  K
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  (
q  e.  A  -> 
( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) ) ) ) ) )
5857imp 418 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  (
q  e.  A  -> 
( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) ) ) ) )
5958ralrimdv 2632 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  A. q  e.  A  ( q
( le `  K
) ( F `  x )  <->  q ( le `  K ) ( G `  x ) ) ) )
60 simpl1l 1006 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  K  e.  HL )
61 simpl1 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
62 simpl2 959 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  F  e.  T )
63 simpr 447 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  x  e.  ( Base `  K
) )
6461, 62, 63, 46syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( F `  x )  e.  ( Base `  K
) )
65 simpl3 960 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  G  e.  T )
6661, 65, 63, 52syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( G `  x )  e.  ( Base `  K
) )
673, 10, 11hlateq 29588 . . . . . 6  |-  ( ( K  e.  HL  /\  ( F `  x )  e.  ( Base `  K
)  /\  ( G `  x )  e.  (
Base `  K )
)  ->  ( A. q  e.  A  (
q ( le `  K ) ( F `
 x )  <->  q ( le `  K ) ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
6860, 64, 66, 67syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) )  <-> 
( F `  x
)  =  ( G `
 x ) ) )
6959, 68sylibd 205 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  ( F `  x )  =  ( G `  x ) ) )
7069ralrimdva 2633 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  A. x  e.  ( Base `  K
) ( F `  x )  =  ( G `  x ) ) )
71243adant3 975 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
72 f1ofn 5473 . . . . 5  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  F  Fn  ( Base `  K ) )
7371, 72syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F  Fn  ( Base `  K )
)
7463adant2 974 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
75 f1ofn 5473 . . . . 5  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G  Fn  ( Base `  K ) )
7674, 75syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G  Fn  ( Base `  K )
)
77 eqfnfv 5622 . . . 4  |-  ( ( F  Fn  ( Base `  K )  /\  G  Fn  ( Base `  K
) )  ->  ( F  =  G  <->  A. x  e.  ( Base `  K
) ( F `  x )  =  ( G `  x ) ) )
7873, 76, 77syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  =  G  <->  A. x  e.  (
Base `  K )
( F `  x
)  =  ( G `
 x ) ) )
7970, 78sylibrd 225 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  F  =  G ) )
80 fveq1 5524 . . 3  |-  ( F  =  G  ->  ( F `  p )  =  ( G `  p ) )
8180ralrimivw 2627 . 2  |-  ( F  =  G  ->  A. p  e.  A  ( F `  p )  =  ( G `  p ) )
8279, 81impbid1 194 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  <->  F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023   `'ccnv 4688    Fn wfn 5250   -1-1-onto->wf1o 5254   ` cfv 5255   Basecbs 13148   lecple 13215   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LAutclaut 30174   LTrncltrn 30290
This theorem is referenced by:  ltrneq  30338  cdlemd  30396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294
  Copyright terms: Public domain W3C validator