Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq2 Unicode version

Theorem ltrneq2 30959
Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
ltrneq2.a  |-  A  =  ( Atoms `  K )
ltrneq2.h  |-  H  =  ( LHyp `  K
)
ltrneq2.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrneq2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  <->  F  =  G ) )
Distinct variable groups:    A, p    F, p    G, p
Allowed substitution hints:    T( p)    H( p)    K( p)    W( p)

Proof of Theorem ltrneq2
Dummy variables  q  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  G  e.  T )
3 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
4 ltrneq2.h . . . . . . . . . . . . . . 15  |-  H  =  ( LHyp `  K
)
5 ltrneq2.t . . . . . . . . . . . . . . 15  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5ltrn1o 30935 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
71, 2, 6syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  G : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
8 simpl2 959 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  F  e.  T )
9 simpr3 963 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
q  e.  A )
10 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( le
`  K )  =  ( le `  K
)
11 ltrneq2.a . . . . . . . . . . . . . . . 16  |-  A  =  ( Atoms `  K )
1210, 11, 4, 5ltrncnvat 30952 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  q  e.  A
)  ->  ( `' F `  q )  e.  A )
131, 8, 9, 12syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  q )  e.  A
)
143, 11atbase 30101 . . . . . . . . . . . . . 14  |-  ( ( `' F `  q )  e.  A  ->  ( `' F `  q )  e.  ( Base `  K
) )
1513, 14syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  q )  e.  (
Base `  K )
)
16 f1ocnvfv1 5808 . . . . . . . . . . . . 13  |-  ( ( G : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  ( `' F `  q )  e.  ( Base `  K
) )  ->  ( `' G `  ( G `
 ( `' F `  q ) ) )  =  ( `' F `  q ) )
177, 15, 16syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' G `  ( G `  ( `' F `  q ) ) )  =  ( `' F `  q ) )
18 simpr2 962 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  A. p  e.  A  ( F `  p )  =  ( G `  p ) )
19 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( `' F `  q )  ->  ( F `  p )  =  ( F `  ( `' F `  q ) ) )
20 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( `' F `  q )  ->  ( G `  p )  =  ( G `  ( `' F `  q ) ) )
2119, 20eqeq12d 2310 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( `' F `  q )  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  ( `' F `  q ) )  =  ( G `  ( `' F `  q ) ) ) )
2221rspcv 2893 . . . . . . . . . . . . . . 15  |-  ( ( `' F `  q )  e.  A  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  ( F `  ( `' F `  q )
)  =  ( G `
 ( `' F `  q ) ) ) )
2313, 18, 22sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( F `  ( `' F `  q ) )  =  ( G `
 ( `' F `  q ) ) )
243, 4, 5ltrn1o 30935 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
251, 8, 24syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  F : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
263, 11atbase 30101 . . . . . . . . . . . . . . . 16  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
279, 26syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
q  e.  ( Base `  K ) )
28 f1ocnvfv2 5809 . . . . . . . . . . . . . . 15  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  q  e.  ( Base `  K )
)  ->  ( F `  ( `' F `  q ) )  =  q )
2925, 27, 28syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( F `  ( `' F `  q ) )  =  q )
3023, 29eqtr3d 2330 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( G `  ( `' F `  q ) )  =  q )
3130fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' G `  ( G `  ( `' F `  q ) ) )  =  ( `' G `  q ) )
3217, 31eqtr3d 2330 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  q )  =  ( `' G `  q ) )
3332breq1d 4049 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' F `  q ) ( le
`  K ) x  <-> 
( `' G `  q ) ( le
`  K ) x ) )
34 simpr1 961 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  x  e.  ( Base `  K ) )
35 f1ocnvfv1 5808 . . . . . . . . . . . 12  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( `' F `  ( F `  x ) )  =  x )
3625, 34, 35syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' F `  ( F `  x ) )  =  x )
3736breq2d 4051 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) )  <-> 
( `' F `  q ) ( le
`  K ) x ) )
38 f1ocnvfv1 5808 . . . . . . . . . . . 12  |-  ( ( G : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( `' G `  ( G `  x ) )  =  x )
397, 34, 38syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( `' G `  ( G `  x ) )  =  x )
4039breq2d 4051 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) )  <-> 
( `' G `  q ) ( le
`  K ) x ) )
4133, 37, 403bitr4d 276 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( ( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) )  <-> 
( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) ) ) )
42 simpl1l 1006 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  K  e.  HL )
43 eqid 2296 . . . . . . . . . . . 12  |-  ( LAut `  K )  =  (
LAut `  K )
444, 43, 5ltrnlaut 30934 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F  e.  ( LAut `  K )
)
451, 8, 44syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  F  e.  ( LAut `  K ) )
463, 4, 5ltrncl 30936 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  x  e.  ( Base `  K ) )  ->  ( F `  x )  e.  (
Base `  K )
)
471, 8, 34, 46syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( F `  x
)  e.  ( Base `  K ) )
483, 10, 43lautcnvle 30900 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  F  e.  ( LAut `  K ) )  /\  ( q  e.  (
Base `  K )  /\  ( F `  x
)  e.  ( Base `  K ) ) )  ->  ( q ( le `  K ) ( F `  x
)  <->  ( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) ) ) )
4942, 45, 27, 47, 48syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( q ( le
`  K ) ( F `  x )  <-> 
( `' F `  q ) ( le
`  K ) ( `' F `  ( F `
 x ) ) ) )
504, 43, 5ltrnlaut 30934 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G  e.  ( LAut `  K )
)
511, 2, 50syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  ->  G  e.  ( LAut `  K ) )
523, 4, 5ltrncl 30936 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  x  e.  ( Base `  K ) )  ->  ( G `  x )  e.  (
Base `  K )
)
531, 2, 34, 52syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( G `  x
)  e.  ( Base `  K ) )
543, 10, 43lautcnvle 30900 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  G  e.  ( LAut `  K ) )  /\  ( q  e.  (
Base `  K )  /\  ( G `  x
)  e.  ( Base `  K ) ) )  ->  ( q ( le `  K ) ( G `  x
)  <->  ( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) ) ) )
5542, 51, 27, 53, 54syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( q ( le
`  K ) ( G `  x )  <-> 
( `' G `  q ) ( le
`  K ) ( `' G `  ( G `
 x ) ) ) )
5641, 49, 553bitr4d 276 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
x  e.  ( Base `  K )  /\  A. p  e.  A  ( F `  p )  =  ( G `  p )  /\  q  e.  A ) )  -> 
( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) ) )
57563exp2 1169 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( x  e.  ( Base `  K
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  (
q  e.  A  -> 
( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) ) ) ) ) )
5857imp 418 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  (
q  e.  A  -> 
( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) ) ) ) )
5958ralrimdv 2645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  A. q  e.  A  ( q
( le `  K
) ( F `  x )  <->  q ( le `  K ) ( G `  x ) ) ) )
60 simpl1l 1006 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  K  e.  HL )
61 simpl1 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
62 simpl2 959 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  F  e.  T )
63 simpr 447 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  x  e.  ( Base `  K
) )
6461, 62, 63, 46syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( F `  x )  e.  ( Base `  K
) )
65 simpl3 960 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  G  e.  T )
6661, 65, 63, 52syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( G `  x )  e.  ( Base `  K
) )
673, 10, 11hlateq 30210 . . . . . 6  |-  ( ( K  e.  HL  /\  ( F `  x )  e.  ( Base `  K
)  /\  ( G `  x )  e.  (
Base `  K )
)  ->  ( A. q  e.  A  (
q ( le `  K ) ( F `
 x )  <->  q ( le `  K ) ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
6860, 64, 66, 67syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( q ( le
`  K ) ( F `  x )  <-> 
q ( le `  K ) ( G `
 x ) )  <-> 
( F `  x
)  =  ( G `
 x ) ) )
6959, 68sylibd 205 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  x  e.  ( Base `  K
) )  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  ( F `  x )  =  ( G `  x ) ) )
7069ralrimdva 2646 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  A. x  e.  ( Base `  K
) ( F `  x )  =  ( G `  x ) ) )
71243adant3 975 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
72 f1ofn 5489 . . . . 5  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  F  Fn  ( Base `  K ) )
7371, 72syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  F  Fn  ( Base `  K )
)
7463adant2 974 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
75 f1ofn 5489 . . . . 5  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G  Fn  ( Base `  K ) )
7674, 75syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  G  Fn  ( Base `  K )
)
77 eqfnfv 5638 . . . 4  |-  ( ( F  Fn  ( Base `  K )  /\  G  Fn  ( Base `  K
) )  ->  ( F  =  G  <->  A. x  e.  ( Base `  K
) ( F `  x )  =  ( G `  x ) ) )
7873, 76, 77syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  =  G  <->  A. x  e.  (
Base `  K )
( F `  x
)  =  ( G `
 x ) ) )
7970, 78sylibrd 225 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  ->  F  =  G ) )
80 fveq1 5540 . . 3  |-  ( F  =  G  ->  ( F `  p )  =  ( G `  p ) )
8180ralrimivw 2640 . 2  |-  ( F  =  G  ->  A. p  e.  A  ( F `  p )  =  ( G `  p ) )
8279, 81impbid1 194 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. p  e.  A  ( F `  p )  =  ( G `  p )  <->  F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   class class class wbr 4039   `'ccnv 4704    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271   Basecbs 13164   lecple 13231   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LAutclaut 30796   LTrncltrn 30912
This theorem is referenced by:  ltrneq  30960  cdlemd  31018
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916
  Copyright terms: Public domain W3C validator