Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotacnvN Structured version   Unicode version

Theorem ltrniotacnvN 31377
Description: Version of cdleme51finvtrN 31355 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotaval.l  |-  .<_  =  ( le `  K )
ltrniotaval.a  |-  A  =  ( Atoms `  K )
ltrniotaval.h  |-  H  =  ( LHyp `  K
)
ltrniotaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
ltrniotaval.f  |-  F  =  ( iota_ f  e.  T
( f `  P
)  =  Q )
Assertion
Ref Expression
ltrniotacnvN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  `' F  e.  T )
Distinct variable groups:    A, f    f, H    f, K    .<_ , f    P, f    Q, f    T, f   
f, W
Allowed substitution hint:    F( f)

Proof of Theorem ltrniotacnvN
Dummy variables  s 
t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 ltrniotaval.l . 2  |-  .<_  =  ( le `  K )
3 eqid 2436 . 2  |-  ( join `  K )  =  (
join `  K )
4 eqid 2436 . 2  |-  ( meet `  K )  =  (
meet `  K )
5 ltrniotaval.a . 2  |-  A  =  ( Atoms `  K )
6 ltrniotaval.h . 2  |-  H  =  ( LHyp `  K
)
7 eqid 2436 . 2  |-  ( ( P ( join `  K
) Q ) (
meet `  K ) W )  =  ( ( P ( join `  K ) Q ) ( meet `  K
) W )
8 eqid 2436 . 2  |-  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )
9 eqid 2436 . 2  |-  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )
10 eqid 2436 . 2  |-  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )
11 ltrniotaval.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
12 ltrniotaval.f . 2  |-  F  =  ( iota_ f  e.  T
( f `  P
)  =  Q )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemg1finvtrlemN 31372 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  `' F  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   [_csb 3251   ifcif 3739   class class class wbr 4212    e. cmpt 4266   `'ccnv 4877   ` cfv 5454  (class class class)co 6081   iota_crio 6542   Basecbs 13469   lecple 13536   joincjn 14401   meetcmee 14402   Atomscatm 30061   HLchlt 30148   LHypclh 30781   LTrncltrn 30898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956
  Copyright terms: Public domain W3C validator