Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnle Unicode version

Theorem ltrnle 30940
Description: Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnle.b  |-  B  =  ( Base `  K
)
ltrnle.l  |-  .<_  =  ( le `  K )
ltrnle.h  |-  H  =  ( LHyp `  K
)
ltrnle.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnle  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )

Proof of Theorem ltrnle
StepHypRef Expression
1 simp1l 979 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  K  e.  V )
2 ltrnle.h . . . 4  |-  H  =  ( LHyp `  K
)
3 eqid 2296 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
4 ltrnle.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrnlaut 30934 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F  e.  ( LAut `  K
) )
653adant3 975 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  F  e.  ( LAut `  K ) )
7 simp3l 983 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
8 simp3r 984 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
9 ltrnle.b . . 3  |-  B  =  ( Base `  K
)
10 ltrnle.l . . 3  |-  .<_  =  ( le `  K )
119, 10, 3lautle 30895 . 2  |-  ( ( ( K  e.  V  /\  F  e.  ( LAut `  K ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
121, 6, 7, 8, 11syl22anc 1183 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271   Basecbs 13164   lecple 13231   LHypclh 30795   LAutclaut 30796   LTrncltrn 30912
This theorem is referenced by:  ltrnel  30950  ltrncnvel  30953  cdlemc2  31003  cdlemg17h  31479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-laut 30800  df-ldil 30915  df-ltrn 30916
  Copyright terms: Public domain W3C validator