Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnm Unicode version

Theorem ltrnm 30391
Description: Lattice translation of a meet. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnm.b  |-  B  =  ( Base `  K
)
ltrnm.m  |-  ./\  =  ( meet `  K )
ltrnm.h  |-  H  =  ( LHyp `  K
)
ltrnm.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnm  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  =  ( ( F `  X )  ./\  ( F `  Y )
) )

Proof of Theorem ltrnm
StepHypRef Expression
1 simp1l 980 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  K  e.  HL )
2 hllat 29624 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 15 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  K  e.  Lat )
4 ltrnm.h . . . 4  |-  H  =  ( LHyp `  K
)
5 eqid 2366 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
6 ltrnm.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
74, 5, 6ltrnlaut 30383 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F  e.  ( LAut `  K )
)
873adant3 976 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  F  e.  ( LAut `  K
) )
9 simp3l 984 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
10 simp3r 985 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
11 ltrnm.b . . 3  |-  B  =  ( Base `  K
)
12 ltrnm.m . . 3  |-  ./\  =  ( meet `  K )
1311, 12, 5lautm 30354 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  ( LAut `  K )  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( F `  ( X  ./\  Y
) )  =  ( ( F `  X
)  ./\  ( F `  Y ) ) )
143, 8, 9, 10, 13syl13anc 1185 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  =  ( ( F `  X )  ./\  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   ` cfv 5358  (class class class)co 5981   Basecbs 13356   meetcmee 14289   Latclat 14361   HLchlt 29611   LHypclh 30244   LAutclaut 30245   LTrncltrn 30361
This theorem is referenced by:  ltrnmw  30411  cdlemd2  30459  cdlemg17  30937
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-map 6917  df-poset 14290  df-glb 14319  df-meet 14321  df-lat 14362  df-atl 29559  df-cvlat 29583  df-hlat 29612  df-laut 30249  df-ldil 30364  df-ltrn 30365
  Copyright terms: Public domain W3C validator