Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnm Unicode version

Theorem ltrnm 30320
Description: Lattice translation of a meet. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnm.b  |-  B  =  ( Base `  K
)
ltrnm.m  |-  ./\  =  ( meet `  K )
ltrnm.h  |-  H  =  ( LHyp `  K
)
ltrnm.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnm  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  =  ( ( F `  X )  ./\  ( F `  Y )
) )

Proof of Theorem ltrnm
StepHypRef Expression
1 simp1l 979 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  K  e.  HL )
2 hllat 29553 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 15 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  K  e.  Lat )
4 ltrnm.h . . . 4  |-  H  =  ( LHyp `  K
)
5 eqid 2283 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
6 ltrnm.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
74, 5, 6ltrnlaut 30312 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F  e.  ( LAut `  K )
)
873adant3 975 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  F  e.  ( LAut `  K
) )
9 simp3l 983 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
10 simp3r 984 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
11 ltrnm.b . . 3  |-  B  =  ( Base `  K
)
12 ltrnm.m . . 3  |-  ./\  =  ( meet `  K )
1311, 12, 5lautm 30283 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  ( LAut `  K )  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( F `  ( X  ./\  Y
) )  =  ( ( F `  X
)  ./\  ( F `  Y ) ) )
143, 8, 9, 10, 13syl13anc 1184 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  =  ( ( F `  X )  ./\  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   meetcmee 14079   Latclat 14151   HLchlt 29540   LHypclh 30173   LAutclaut 30174   LTrncltrn 30290
This theorem is referenced by:  ltrnmw  30340  cdlemd2  30388  cdlemg17  30866
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-glb 14109  df-meet 14111  df-lat 14152  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-laut 30178  df-ldil 30293  df-ltrn 30294
  Copyright terms: Public domain W3C validator