Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnidn Structured version   Unicode version

Theorem ltrnnidn 31033
Description: If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom  W is different from the atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrnnidn.b  |-  B  =  ( Base `  K
)
ltrnnidn.l  |-  .<_  =  ( le `  K )
ltrnnidn.a  |-  A  =  ( Atoms `  K )
ltrnnidn.h  |-  H  =  ( LHyp `  K
)
ltrnnidn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnnidn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  =/=  P
)

Proof of Theorem ltrnnidn
StepHypRef Expression
1 simp1l 982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 hlatl 30220 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  AtLat )
4 simp1 958 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp2l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T
)
6 simp2r 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  =/=  (  _I  |`  B ) )
7 ltrnnidn.b . . . . 5  |-  B  =  ( Base `  K
)
8 ltrnnidn.a . . . . 5  |-  A  =  ( Atoms `  K )
9 ltrnnidn.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 ltrnnidn.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
11 eqid 2438 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlnidat 31032 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  e.  A
)
134, 5, 6, 12syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  e.  A
)
14 eqid 2438 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
1514, 8atn0 30168 . . 3  |-  ( ( K  e.  AtLat  /\  (
( ( trL `  K
) `  W ) `  F )  e.  A
)  ->  ( (
( trL `  K
) `  W ) `  F )  =/=  ( 0. `  K ) )
163, 13, 15syl2anc 644 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  =/=  ( 0. `  K ) )
17 simpl1 961 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simpl3 963 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
19 simpl2l 1011 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
20 simpr 449 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( F `  P )  =  P )
21 ltrnnidn.l . . . . . 6  |-  .<_  =  ( le `  K )
2221, 14, 8, 9, 10, 11trl0 31029 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( ( ( trL `  K ) `
 W ) `  F )  =  ( 0. `  K ) )
2317, 18, 19, 20, 22syl112anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( (
( trL `  K
) `  W ) `  F )  =  ( 0. `  K ) )
2423ex 425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `
 P )  =  P  ->  ( (
( trL `  K
) `  W ) `  F )  =  ( 0. `  K ) ) )
2524necon3d 2641 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( ( ( trL `  K
) `  W ) `  F )  =/=  ( 0. `  K )  -> 
( F `  P
)  =/=  P ) )
2616, 25mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  =/=  P
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214    _I cid 4495    |` cres 4882   ` cfv 5456   Basecbs 13471   lecple 13538   0.cp0 14468   Atomscatm 30123   AtLatcal 30124   HLchlt 30210   LHypclh 30843   LTrncltrn 30960   trLctrl 31017
This theorem is referenced by:  ltrnideq  31034
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-map 7022  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-lhyp 30847  df-laut 30848  df-ldil 30963  df-ltrn 30964  df-trl 31018
  Copyright terms: Public domain W3C validator