MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Unicode version

Theorem ltrnq 8861
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )

Proof of Theorem ltrnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8808 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4929 . 2  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
31brel 4929 . . 3  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( ( *Q `  B )  e. 
Q.  /\  ( *Q `  A )  e.  Q. ) )
4 dmrecnq 8850 . . . . 5  |-  dom  *Q  =  Q.
5 0nnq 8806 . . . . 5  |-  -.  (/)  e.  Q.
64, 5ndmfvrcl 5759 . . . 4  |-  ( ( *Q `  B )  e.  Q.  ->  B  e.  Q. )
74, 5ndmfvrcl 5759 . . . 4  |-  ( ( *Q `  A )  e.  Q.  ->  A  e.  Q. )
86, 7anim12ci 552 . . 3  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  e.  Q.  /\  B  e.  Q. )
)
93, 8syl 16 . 2  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( A  e.  Q.  /\  B  e. 
Q. ) )
10 breq1 4218 . . . 4  |-  ( x  =  A  ->  (
x  <Q  y  <->  A  <Q  y ) )
11 fveq2 5731 . . . . 5  |-  ( x  =  A  ->  ( *Q `  x )  =  ( *Q `  A
) )
1211breq2d 4227 . . . 4  |-  ( x  =  A  ->  (
( *Q `  y
)  <Q  ( *Q `  x )  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) )
1310, 12bibi12d 314 . . 3  |-  ( x  =  A  ->  (
( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) )  <->  ( A  <Q  y  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) ) )
14 breq2 4219 . . . 4  |-  ( y  =  B  ->  ( A  <Q  y  <->  A  <Q  B ) )
15 fveq2 5731 . . . . 5  |-  ( y  =  B  ->  ( *Q `  y )  =  ( *Q `  B
) )
1615breq1d 4225 . . . 4  |-  ( y  =  B  ->  (
( *Q `  y
)  <Q  ( *Q `  A )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
1714, 16bibi12d 314 . . 3  |-  ( y  =  B  ->  (
( A  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  A
) )  <->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) ) )
18 recclnq 8848 . . . . . 6  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
19 recclnq 8848 . . . . . 6  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
20 mulclnq 8829 . . . . . 6  |-  ( ( ( *Q `  x
)  e.  Q.  /\  ( *Q `  y )  e.  Q. )  -> 
( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
2118, 19, 20syl2an 465 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
22 ltmnq 8854 . . . . 5  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  e.  Q.  ->  (
x  <Q  y  <->  ( (
( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
2321, 22syl 16 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
24 mulcomnq 8835 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
25 mulassnq 8841 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
26 mulcomnq 8835 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
2724, 25, 263eqtr2i 2464 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
28 recidnq 8847 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
2928oveq2d 6100 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  y
)  .Q  ( x  .Q  ( *Q `  x ) ) )  =  ( ( *Q
`  y )  .Q  1Q ) )
30 mulidnq 8845 . . . . . . . 8  |-  ( ( *Q `  y )  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3119, 30syl 16 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3229, 31sylan9eq 2490 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )  =  ( *Q
`  y ) )
3327, 32syl5eq 2482 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  x
)  =  ( *Q
`  y ) )
34 mulassnq 8841 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
( *Q `  y
)  .Q  y ) )
35 mulcomnq 8835 . . . . . . . 8  |-  ( ( *Q `  y )  .Q  y )  =  ( y  .Q  ( *Q `  y ) )
3635oveq2i 6095 . . . . . . 7  |-  ( ( *Q `  x )  .Q  ( ( *Q
`  y )  .Q  y ) )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
3734, 36eqtri 2458 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
38 recidnq 8847 . . . . . . . 8  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
3938oveq2d 6100 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  x
)  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( ( *Q
`  x )  .Q  1Q ) )
40 mulidnq 8845 . . . . . . . 8  |-  ( ( *Q `  x )  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4118, 40syl 16 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4239, 41sylan9eqr 2492 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  ( *Q
`  x ) )
4337, 42syl5eq 2482 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
)  =  ( *Q
`  x ) )
4433, 43breq12d 4228 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q  (
( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  y )  <->  ( *Q `  y )  <Q  ( *Q `  x ) ) )
4523, 44bitrd 246 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) ) )
4613, 17, 45vtocl2ga 3021 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
472, 9, 46pm5.21nii 344 1  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Q.cnq 8732   1Qc1q 8733    .Q cmq 8736   *Qcrq 8737    <Q cltq 8738
This theorem is referenced by:  addclprlem1  8898  reclem2pr  8930  reclem3pr  8931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-omul 6732  df-er 6908  df-ni 8754  df-mi 8756  df-lti 8757  df-mpq 8791  df-ltpq 8792  df-enq 8793  df-nq 8794  df-erq 8795  df-mq 8797  df-1nq 8798  df-rq 8799  df-ltnq 8800
  Copyright terms: Public domain W3C validator