Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnset Unicode version

Theorem ltrnset 30929
Description: The set of lattice translations for a fiducial co-atom 
W. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l  |-  .<_  =  ( le `  K )
ltrnset.j  |-  .\/  =  ( join `  K )
ltrnset.m  |-  ./\  =  ( meet `  K )
ltrnset.a  |-  A  =  ( Atoms `  K )
ltrnset.h  |-  H  =  ( LHyp `  K
)
ltrnset.d  |-  D  =  ( ( LDil `  K
) `  W )
ltrnset.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnset  |-  ( ( K  e.  B  /\  W  e.  H )  ->  T  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
Distinct variable groups:    q, p, A    D, f    f, p, q, K    f, W, p, q
Allowed substitution hints:    A( f)    B( f, q, p)    D( q, p)    T( f, q, p)    H( f, q, p)    .\/ ( f,
q, p)    .<_ ( f, q, p)    ./\ ( f, q, p)

Proof of Theorem ltrnset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltrnset.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
2 ltrnset.l . . . . 5  |-  .<_  =  ( le `  K )
3 ltrnset.j . . . . 5  |-  .\/  =  ( join `  K )
4 ltrnset.m . . . . 5  |-  ./\  =  ( meet `  K )
5 ltrnset.a . . . . 5  |-  A  =  ( Atoms `  K )
6 ltrnset.h . . . . 5  |-  H  =  ( LHyp `  K
)
72, 3, 4, 5, 6ltrnfset 30928 . . . 4  |-  ( K  e.  B  ->  ( LTrn `  K )  =  ( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } ) )
87fveq1d 5543 . . 3  |-  ( K  e.  B  ->  (
( LTrn `  K ) `  W )  =  ( ( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } ) `  W ) )
91, 8syl5eq 2340 . 2  |-  ( K  e.  B  ->  T  =  ( ( w  e.  H  |->  { f  e.  ( ( LDil `  K ) `  w
)  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  w )  =  ( ( q  .\/  (
f `  q )
)  ./\  w )
) } ) `  W ) )
10 fveq2 5541 . . . . 5  |-  ( w  =  W  ->  (
( LDil `  K ) `  w )  =  ( ( LDil `  K
) `  W )
)
11 ltrnset.d . . . . 5  |-  D  =  ( ( LDil `  K
) `  W )
1210, 11syl6eqr 2346 . . . 4  |-  ( w  =  W  ->  (
( LDil `  K ) `  w )  =  D )
13 breq2 4043 . . . . . . . 8  |-  ( w  =  W  ->  (
p  .<_  w  <->  p  .<_  W ) )
1413notbid 285 . . . . . . 7  |-  ( w  =  W  ->  ( -.  p  .<_  w  <->  -.  p  .<_  W ) )
15 breq2 4043 . . . . . . . 8  |-  ( w  =  W  ->  (
q  .<_  w  <->  q  .<_  W ) )
1615notbid 285 . . . . . . 7  |-  ( w  =  W  ->  ( -.  q  .<_  w  <->  -.  q  .<_  W ) )
1714, 16anbi12d 691 . . . . . 6  |-  ( w  =  W  ->  (
( -.  p  .<_  w  /\  -.  q  .<_  w )  <->  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
18 oveq2 5882 . . . . . . 7  |-  ( w  =  W  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( p 
.\/  ( f `  p ) )  ./\  W ) )
19 oveq2 5882 . . . . . . 7  |-  ( w  =  W  ->  (
( q  .\/  (
f `  q )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) )
2018, 19eqeq12d 2310 . . . . . 6  |-  ( w  =  W  ->  (
( ( p  .\/  ( f `  p
) )  ./\  w
)  =  ( ( q  .\/  ( f `
 q ) ) 
./\  w )  <->  ( (
p  .\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) )
2117, 20imbi12d 311 . . . . 5  |-  ( w  =  W  ->  (
( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) ) )
22212ralbidv 2598 . . . 4  |-  ( w  =  W  ->  ( A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) )  <->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) ) )
2312, 22rabeqbidv 2796 . . 3  |-  ( w  =  W  ->  { f  e.  ( ( LDil `  K ) `  w
)  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  w )  =  ( ( q  .\/  (
f `  q )
)  ./\  w )
) }  =  {
f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
24 eqid 2296 . . 3  |-  ( w  e.  H  |->  { f  e.  ( ( LDil `  K ) `  w
)  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  w )  =  ( ( q  .\/  (
f `  q )
)  ./\  w )
) } )  =  ( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } )
25 fvex 5555 . . . . 5  |-  ( (
LDil `  K ) `  W )  e.  _V
2611, 25eqeltri 2366 . . . 4  |-  D  e. 
_V
2726rabex 4181 . . 3  |-  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) }  e.  _V
2823, 24, 27fvmpt 5618 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { f  e.  ( ( LDil `  K
) `  w )  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  w  /\  -.  q  .<_  w )  ->  (
( p  .\/  (
f `  p )
)  ./\  w )  =  ( ( q 
.\/  ( f `  q ) )  ./\  w ) ) } ) `  W )  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( f `  p ) )  ./\  W )  =  ( ( q  .\/  ( f `
 q ) ) 
./\  W ) ) } )
299, 28sylan9eq 2348 1  |-  ( ( K  e.  B  /\  W  e.  H )  ->  T  =  { f  e.  D  |  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( q 
.\/  ( f `  q ) )  ./\  W ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   LHypclh 30795   LDilcldil 30911   LTrncltrn 30912
This theorem is referenced by:  isltrn  30930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-ltrn 30916
  Copyright terms: Public domain W3C validator