MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsrpr Structured version   Unicode version

Theorem ltsrpr 8944
Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
ltsrpr  |-  ( [
<. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) )

Proof of Theorem ltsrpr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 8937 . 2  |-  ~R  e.  _V
2 enrer 8935 . . 3  |-  ~R  Er  ( P.  X.  P. )
3 erdm 6907 . . 3  |-  (  ~R  Er  ( P.  X.  P. )  ->  dom  ~R  =  ( P.  X.  P. )
)
42, 3ax-mp 8 . 2  |-  dom  ~R  =  ( P.  X.  P. )
5 df-nr 8927 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
6 ltrelsr 8938 . 2  |-  <R  C_  ( R.  X.  R. )
7 ltrelpr 8867 . 2  |-  <P  C_  ( P.  X.  P. )
8 0npr 8861 . 2  |-  -.  (/)  e.  P.
9 dmplp 8881 . 2  |-  dom  +P.  =  ( P.  X.  P. )
10 df-ltr 8930 . . 3  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
11 addclpr 8887 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  +P.  v
)  e.  P. )
1211ad2ant2lr 729 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  v )  e.  P. )
13 addclpr 8887 . . . . . . 7  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
1413ad2ant2lr 729 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  +P.  C )  e.  P. )
1512, 14anim12ci 551 . . . . 5  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  (
v  e.  P.  /\  u  e.  P. )
)  /\  ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  C )  e. 
P.  /\  ( w  +P.  v )  e.  P. ) )
1615an4s 800 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  C )  e. 
P.  /\  ( w  +P.  v )  e.  P. ) )
17 enreceq 8936 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  <->  ( z  +P.  B )  =  ( w  +P.  A ) ) )
18 enreceq 8936 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( v  +P.  D )  =  ( u  +P.  C ) ) )
19 eqcom 2437 . . . . . . 7  |-  ( ( v  +P.  D )  =  ( u  +P.  C )  <->  ( u  +P.  C )  =  ( v  +P.  D ) )
2018, 19syl6bb 253 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( u  +P.  C )  =  ( v  +P. 
D ) ) )
2117, 20bi2anan9 844 . . . . 5  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  <->  ( (
z  +P.  B )  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P.  D
) ) ) )
22 oveq12 6082 . . . . . 6  |-  ( ( ( z  +P.  B
)  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P. 
D ) )  -> 
( ( z  +P. 
B )  +P.  (
u  +P.  C )
)  =  ( ( w  +P.  A )  +P.  ( v  +P. 
D ) ) )
23 addcompr 8890 . . . . . . . . . 10  |-  ( u  +P.  B )  =  ( B  +P.  u
)
2423oveq1i 6083 . . . . . . . . 9  |-  ( ( u  +P.  B )  +P.  C )  =  ( ( B  +P.  u )  +P.  C
)
25 addasspr 8891 . . . . . . . . 9  |-  ( ( u  +P.  B )  +P.  C )  =  ( u  +P.  ( B  +P.  C ) )
26 addasspr 8891 . . . . . . . . 9  |-  ( ( B  +P.  u )  +P.  C )  =  ( B  +P.  (
u  +P.  C )
)
2724, 25, 263eqtr3i 2463 . . . . . . . 8  |-  ( u  +P.  ( B  +P.  C ) )  =  ( B  +P.  ( u  +P.  C ) )
2827oveq2i 6084 . . . . . . 7  |-  ( z  +P.  ( u  +P.  ( B  +P.  C ) ) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) )
29 addasspr 8891 . . . . . . 7  |-  ( ( z  +P.  u )  +P.  ( B  +P.  C ) )  =  ( z  +P.  ( u  +P.  ( B  +P.  C ) ) )
30 addasspr 8891 . . . . . . 7  |-  ( ( z  +P.  B )  +P.  ( u  +P.  C ) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) )
3128, 29, 303eqtr4i 2465 . . . . . 6  |-  ( ( z  +P.  u )  +P.  ( B  +P.  C ) )  =  ( ( z  +P.  B
)  +P.  ( u  +P.  C ) )
32 addcompr 8890 . . . . . . . . . 10  |-  ( v  +P.  A )  =  ( A  +P.  v
)
3332oveq1i 6083 . . . . . . . . 9  |-  ( ( v  +P.  A )  +P.  D )  =  ( ( A  +P.  v )  +P.  D
)
34 addasspr 8891 . . . . . . . . 9  |-  ( ( v  +P.  A )  +P.  D )  =  ( v  +P.  ( A  +P.  D ) )
35 addasspr 8891 . . . . . . . . 9  |-  ( ( A  +P.  v )  +P.  D )  =  ( A  +P.  (
v  +P.  D )
)
3633, 34, 353eqtr3i 2463 . . . . . . . 8  |-  ( v  +P.  ( A  +P.  D ) )  =  ( A  +P.  ( v  +P.  D ) )
3736oveq2i 6084 . . . . . . 7  |-  ( w  +P.  ( v  +P.  ( A  +P.  D
) ) )  =  ( w  +P.  ( A  +P.  ( v  +P. 
D ) ) )
38 addasspr 8891 . . . . . . 7  |-  ( ( w  +P.  v )  +P.  ( A  +P.  D ) )  =  ( w  +P.  ( v  +P.  ( A  +P.  D ) ) )
39 addasspr 8891 . . . . . . 7  |-  ( ( w  +P.  A )  +P.  ( v  +P. 
D ) )  =  ( w  +P.  ( A  +P.  ( v  +P. 
D ) ) )
4037, 38, 393eqtr4i 2465 . . . . . 6  |-  ( ( w  +P.  v )  +P.  ( A  +P.  D ) )  =  ( ( w  +P.  A
)  +P.  ( v  +P.  D ) )
4122, 31, 403eqtr4g 2492 . . . . 5  |-  ( ( ( z  +P.  B
)  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P. 
D ) )  -> 
( ( z  +P.  u )  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D
) ) )
4221, 41syl6bi 220 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) ) )
43 ovex 6098 . . . . 5  |-  ( z  +P.  u )  e. 
_V
44 ovex 6098 . . . . 5  |-  ( B  +P.  C )  e. 
_V
45 ltapr 8914 . . . . 5  |-  ( f  e.  P.  ->  (
x  <P  y  <->  ( f  +P.  x )  <P  (
f  +P.  y )
) )
46 ovex 6098 . . . . 5  |-  ( w  +P.  v )  e. 
_V
47 addcompr 8890 . . . . 5  |-  ( x  +P.  y )  =  ( y  +P.  x
)
48 ovex 6098 . . . . 5  |-  ( A  +P.  D )  e. 
_V
4943, 44, 45, 46, 47, 48caovord3 6252 . . . 4  |-  ( ( ( ( B  +P.  C )  e.  P.  /\  ( w  +P.  v )  e.  P. )  /\  ( ( z  +P.  u )  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D
) ) )  -> 
( ( z  +P.  u )  <P  (
w  +P.  v )  <->  ( A  +P.  D ) 
<P  ( B  +P.  C
) ) )
5016, 42, 49ee12an 1372 . . 3  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) ) )
511, 2, 5, 10, 50brecop 6989 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
521, 4, 5, 6, 7, 8, 9, 51brecop2 6990 1  |-  ( [
<. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204    X. cxp 4868   dom cdm 4870  (class class class)co 6073    Er wer 6894   [cec 6895   P.cnp 8726    +P. cpp 8728    <P cltp 8730    ~R cer 8733   R.cnr 8734    <R cltr 8740
This theorem is referenced by:  gt0srpr  8945  ltsosr  8961  0lt1sr  8962  ltasr  8967  mappsrpr  8975  ltpsrpr  8976  map2psrpr  8977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-ni 8741  df-pli 8742  df-mi 8743  df-lti 8744  df-plpq 8777  df-mpq 8778  df-ltpq 8779  df-enq 8780  df-nq 8781  df-erq 8782  df-plq 8783  df-mq 8784  df-1nq 8785  df-rq 8786  df-ltnq 8787  df-np 8850  df-plp 8852  df-ltp 8854  df-enr 8926  df-nr 8927  df-ltr 8930
  Copyright terms: Public domain W3C validator