MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lttri2d Structured version   Unicode version

Theorem lttri2d 9214
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
lttri2d  |-  ( ph  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )

Proof of Theorem lttri2d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 lttri2 9159 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
41, 2, 3syl2anc 644 1  |-  ( ph  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    e. wcel 1726    =/= wne 2601   class class class wbr 4214   RRcr 8991    < clt 9122
This theorem is referenced by:  msqgt0  9550  ruclem12  12842  ftc1lem5  19926  coe1mul3  20024  lgsquadlem3  21142  erdszelem9  24887  ftc1cnnc  26281  fphpdo  26880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-resscn 9049  ax-pre-lttri 9066  ax-pre-lttrn 9067
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-po 4505  df-so 4506  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-ltxr 9127
  Copyright terms: Public domain W3C validator