MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lttri4d Unicode version

Theorem lttri4d 9140
Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
lttri4d  |-  ( ph  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )

Proof of Theorem lttri4d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 lttri4 9086 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
41, 2, 3syl2anc 643 1  |-  ( ph  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 935    = wceq 1649    e. wcel 1717   class class class wbr 4147   RRcr 8916    < clt 9047
This theorem is referenced by:  icccvx  18840  ivthicc  19216  dvivth  19755  coseq00topi  20271  cvxcl  20684  scvxcvx  20685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635  ax-resscn 8974  ax-pre-lttri 8991  ax-pre-lttrn 8992
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-nel 2547  df-ral 2648  df-rex 2649  df-rab 2652  df-v 2895  df-sbc 3099  df-csb 3189  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-op 3760  df-uni 3952  df-br 4148  df-opab 4202  df-mpt 4203  df-id 4433  df-po 4438  df-so 4439  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-iota 5352  df-fun 5390  df-fn 5391  df-f 5392  df-f1 5393  df-fo 5394  df-f1o 5395  df-fv 5396  df-er 6835  df-en 7040  df-dom 7041  df-sdom 7042  df-pnf 9049  df-mnf 9050  df-ltxr 9052
  Copyright terms: Public domain W3C validator