MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Unicode version

Theorem ltweuz 11071
Description:  < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz  |-  <  We  ( ZZ>= `  A )

Proof of Theorem ltweuz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4702 . . . . 5  |-  Ord  om
2 ordwe 4442 . . . . 5  |-  ( Ord 
om  ->  _E  We  om )
31, 2ax-mp 8 . . . 4  |-  _E  We  om
4 rdgeq2 6467 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  ->  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  =  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) ) )
54reseq1d 4991 . . . . . . . 8  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om ) )
6 isoeq1 5858 . . . . . . . 8  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  <-> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) ) ) )
75, 6syl 15 . . . . . . 7  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  A
)  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A
) )  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) ) ) )
8 fveq2 5563 . . . . . . . 8  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ZZ>= `  A )  =  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) )
9 isoeq5 5862 . . . . . . . 8  |-  ( (
ZZ>= `  A )  =  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  <-> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) ) ) )
108, 9syl 15 . . . . . . 7  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) )  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) ) ) )
11 0z 10082 . . . . . . . . 9  |-  0  e.  ZZ
1211elimel 3651 . . . . . . . 8  |-  if ( A  e.  ZZ ,  A ,  0 )  e.  ZZ
13 eqid 2316 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )
1412, 13om2uzisoi 11064 . . . . . . 7  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) )
157, 10, 14dedth2v 3644 . . . . . 6  |-  ( A  e.  ZZ  ->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) ) )
16 isocnv 5869 . . . . . 6  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  ->  `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  Isom  <  ,  _E  (
( ZZ>= `  A ) ,  om ) )
1715, 16syl 15 . . . . 5  |-  ( A  e.  ZZ  ->  `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  <  ,  _E  ( ( ZZ>= `  A
) ,  om )
)
18 dmres 5013 . . . . . . . 8  |-  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  =  ( om  i^i  dom 
rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A ) )
19 omex 7389 . . . . . . . . 9  |-  om  e.  _V
2019inex1 4192 . . . . . . . 8  |-  ( om 
i^i  dom  rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A ) )  e.  _V
2118, 20eqeltri 2386 . . . . . . 7  |-  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  e.  _V
22 cnvimass 5070 . . . . . . 7  |-  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y
)  C_  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )
2321, 22ssexi 4196 . . . . . 6  |-  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y
)  e.  _V
2423ax-gen 1537 . . . . 5  |-  A. y
( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om ) " y )  e. 
_V
25 isowe2 5889 . . . . 5  |-  ( ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  A
)  |`  om )  Isom  <  ,  _E  ( ( ZZ>=
`  A ) ,  om )  /\  A. y ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y )  e.  _V )  -> 
(  _E  We  om  ->  <  We  ( ZZ>= `  A ) ) )
2617, 24, 25sylancl 643 . . . 4  |-  ( A  e.  ZZ  ->  (  _E  We  om  ->  <  We  ( ZZ>= `  A )
) )
273, 26mpi 16 . . 3  |-  ( A  e.  ZZ  ->  <  We  ( ZZ>= `  A )
)
28 uzf 10280 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2928fdmi 5432 . . 3  |-  dom  ZZ>=  =  ZZ
3027, 29eleq2s 2408 . 2  |-  ( A  e.  dom  ZZ>=  ->  <  We  ( ZZ>= `  A )
)
31 we0 4425 . . 3  |-  <  We  (/)
32 ndmfv 5590 . . . 4  |-  ( -.  A  e.  dom  ZZ>=  -> 
( ZZ>= `  A )  =  (/) )
33 weeq2 4419 . . . 4  |-  ( (
ZZ>= `  A )  =  (/)  ->  (  <  We  ( ZZ>= `  A )  <->  < 
We  (/) ) )
3432, 33syl 15 . . 3  |-  ( -.  A  e.  dom  ZZ>=  -> 
(  <  We  ( ZZ>=
`  A )  <->  <  We  (/) ) )
3531, 34mpbiri 224 . 2  |-  ( -.  A  e.  dom  ZZ>=  ->  <  We  ( ZZ>= `  A
) )
3630, 35pm2.61i 156 1  |-  <  We  ( ZZ>= `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176   A.wal 1531    = wceq 1633    e. wcel 1701   _Vcvv 2822    i^i cin 3185   (/)c0 3489   ifcif 3599   ~Pcpw 3659    e. cmpt 4114    _E cep 4340    We wwe 4388   Ord word 4428   omcom 4693   `'ccnv 4725   dom cdm 4726    |` cres 4728   "cima 4729   ` cfv 5292    Isom wiso 5293  (class class class)co 5900   reccrdg 6464   0cc0 8782   1c1 8783    + caddc 8785    < clt 8912   ZZcz 10071   ZZ>=cuz 10277
This theorem is referenced by:  ltwenn  11072  ltwefz  11073  ltbwe  16263  dyadmax  19006  uzsinds  24601  bpolylem  25169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-n0 10013  df-z 10072  df-uz 10278
  Copyright terms: Public domain W3C validator