MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxrlt Structured version   Unicode version

Theorem ltxrlt 9139
Description: The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )

Proof of Theorem ltxrlt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brun 4251 . . . . 5  |-  ( A ( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  \/  A ( {  -oo }  X.  RR ) B ) )
2 brxp 4902 . . . . . . 7  |-  ( A ( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  <->  ( A  e.  ( RR  u.  {  -oo } )  /\  B  e.  {  +oo } ) )
3 elsni 3831 . . . . . . . . 9  |-  ( B  e.  {  +oo }  ->  B  =  +oo )
4 pnfnre 9120 . . . . . . . . . . 11  |-  +oo  e/  RR
5 df-nel 2602 . . . . . . . . . . 11  |-  (  +oo  e/  RR  <->  -.  +oo  e.  RR )
64, 5mpbi 200 . . . . . . . . . 10  |-  -.  +oo  e.  RR
7 simpr 448 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
8 eleq1 2496 . . . . . . . . . . 11  |-  ( B  =  +oo  ->  ( B  e.  RR  <->  +oo  e.  RR ) )
97, 8syl5ib 211 . . . . . . . . . 10  |-  ( B  =  +oo  ->  (
( A  e.  RR  /\  B  e.  RR )  ->  +oo  e.  RR ) )
106, 9mtoi 171 . . . . . . . . 9  |-  ( B  =  +oo  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
113, 10syl 16 . . . . . . . 8  |-  ( B  e.  {  +oo }  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
1211adantl 453 . . . . . . 7  |-  ( ( A  e.  ( RR  u.  {  -oo }
)  /\  B  e.  { 
+oo } )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
132, 12sylbi 188 . . . . . 6  |-  ( A ( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
14 brxp 4902 . . . . . . 7  |-  ( A ( {  -oo }  X.  RR ) B  <->  ( A  e.  {  -oo }  /\  B  e.  RR )
)
15 elsni 3831 . . . . . . . . 9  |-  ( A  e.  {  -oo }  ->  A  =  -oo )
16 mnfnre 9121 . . . . . . . . . . 11  |-  -oo  e/  RR
17 df-nel 2602 . . . . . . . . . . 11  |-  (  -oo  e/  RR  <->  -.  -oo  e.  RR )
1816, 17mpbi 200 . . . . . . . . . 10  |-  -.  -oo  e.  RR
19 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
20 eleq1 2496 . . . . . . . . . . 11  |-  ( A  =  -oo  ->  ( A  e.  RR  <->  -oo  e.  RR ) )
2119, 20syl5ib 211 . . . . . . . . . 10  |-  ( A  =  -oo  ->  (
( A  e.  RR  /\  B  e.  RR )  ->  -oo  e.  RR ) )
2218, 21mtoi 171 . . . . . . . . 9  |-  ( A  =  -oo  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2315, 22syl 16 . . . . . . . 8  |-  ( A  e.  {  -oo }  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2423adantr 452 . . . . . . 7  |-  ( ( A  e.  {  -oo }  /\  B  e.  RR )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2514, 24sylbi 188 . . . . . 6  |-  ( A ( {  -oo }  X.  RR ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2613, 25jaoi 369 . . . . 5  |-  ( ( A ( ( RR  u.  {  -oo }
)  X.  {  +oo } ) B  \/  A
( {  -oo }  X.  RR ) B )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
271, 26sylbi 188 . . . 4  |-  ( A ( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2827con2i 114 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B )
29 biimt 326 . . . 4  |-  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  -> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) ) )
30 df-ltxr 9118 . . . . . . 7  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) )
3130equncomi 3486 . . . . . 6  |-  <  =  ( ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } )
3231breqi 4211 . . . . 5  |-  ( A  <  B  <->  A (
( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } ) B )
33 brun 4251 . . . . 5  |-  ( A ( ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } ) B  <-> 
( A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  \/  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
34 df-or 360 . . . . 5  |-  ( ( A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  \/  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B )  <-> 
( -.  A ( ( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3532, 33, 343bitri 263 . . . 4  |-  ( A  <  B  <->  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3629, 35syl6rbbr 256 . . 3  |-  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  -> 
( A  <  B  <->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3728, 36syl 16 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
38 breq12 4210 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <RR  y  <->  A  <RR  B ) )
39 df-3an 938 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
4039opabbii 4265 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4138, 40brab2ga 4944 . . 3  |-  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B ) )
4241baibr 873 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
4337, 42bitr4d 248 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    e/ wnel 2600    u. cun 3311   {csn 3807   class class class wbr 4205   {copab 4258    X. cxp 4869   RRcr 8982    <RR cltrr 8987    +oocpnf 9110    -oocmnf 9111    < clt 9113
This theorem is referenced by:  axlttri  9140  axlttrn  9141  axltadd  9142  axmulgt0  9143  axsup  9144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-resscn 9040
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-ltxr 9118
  Copyright terms: Public domain W3C validator