MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxrlt Unicode version

Theorem ltxrlt 9079
Description: The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )

Proof of Theorem ltxrlt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brun 4199 . . . . 5  |-  ( A ( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  \/  A ( {  -oo }  X.  RR ) B ) )
2 brxp 4849 . . . . . . 7  |-  ( A ( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  <->  ( A  e.  ( RR  u.  {  -oo } )  /\  B  e.  {  +oo } ) )
3 elsni 3781 . . . . . . . . 9  |-  ( B  e.  {  +oo }  ->  B  =  +oo )
4 pnfnre 9060 . . . . . . . . . . 11  |-  +oo  e/  RR
5 df-nel 2553 . . . . . . . . . . 11  |-  (  +oo  e/  RR  <->  -.  +oo  e.  RR )
64, 5mpbi 200 . . . . . . . . . 10  |-  -.  +oo  e.  RR
7 simpr 448 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
8 eleq1 2447 . . . . . . . . . . 11  |-  ( B  =  +oo  ->  ( B  e.  RR  <->  +oo  e.  RR ) )
97, 8syl5ib 211 . . . . . . . . . 10  |-  ( B  =  +oo  ->  (
( A  e.  RR  /\  B  e.  RR )  ->  +oo  e.  RR ) )
106, 9mtoi 171 . . . . . . . . 9  |-  ( B  =  +oo  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
113, 10syl 16 . . . . . . . 8  |-  ( B  e.  {  +oo }  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
1211adantl 453 . . . . . . 7  |-  ( ( A  e.  ( RR  u.  {  -oo }
)  /\  B  e.  { 
+oo } )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
132, 12sylbi 188 . . . . . 6  |-  ( A ( ( RR  u.  { 
-oo } )  X.  {  +oo } ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
14 brxp 4849 . . . . . . 7  |-  ( A ( {  -oo }  X.  RR ) B  <->  ( A  e.  {  -oo }  /\  B  e.  RR )
)
15 elsni 3781 . . . . . . . . 9  |-  ( A  e.  {  -oo }  ->  A  =  -oo )
16 mnfnre 9061 . . . . . . . . . . 11  |-  -oo  e/  RR
17 df-nel 2553 . . . . . . . . . . 11  |-  (  -oo  e/  RR  <->  -.  -oo  e.  RR )
1816, 17mpbi 200 . . . . . . . . . 10  |-  -.  -oo  e.  RR
19 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
20 eleq1 2447 . . . . . . . . . . 11  |-  ( A  =  -oo  ->  ( A  e.  RR  <->  -oo  e.  RR ) )
2119, 20syl5ib 211 . . . . . . . . . 10  |-  ( A  =  -oo  ->  (
( A  e.  RR  /\  B  e.  RR )  ->  -oo  e.  RR ) )
2218, 21mtoi 171 . . . . . . . . 9  |-  ( A  =  -oo  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2315, 22syl 16 . . . . . . . 8  |-  ( A  e.  {  -oo }  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2423adantr 452 . . . . . . 7  |-  ( ( A  e.  {  -oo }  /\  B  e.  RR )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2514, 24sylbi 188 . . . . . 6  |-  ( A ( {  -oo }  X.  RR ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2613, 25jaoi 369 . . . . 5  |-  ( ( A ( ( RR  u.  {  -oo }
)  X.  {  +oo } ) B  \/  A
( {  -oo }  X.  RR ) B )  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
271, 26sylbi 188 . . . 4  |-  ( A ( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  ->  -.  ( A  e.  RR  /\  B  e.  RR ) )
2827con2i 114 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B )
29 biimt 326 . . . 4  |-  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  -> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) ) )
30 df-ltxr 9058 . . . . . . 7  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) )
3130equncomi 3436 . . . . . 6  |-  <  =  ( ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } )
3231breqi 4159 . . . . 5  |-  ( A  <  B  <->  A (
( ( ( RR  u.  {  -oo }
)  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } ) B )
33 brun 4199 . . . . 5  |-  ( A ( ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) )  u.  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } ) B  <-> 
( A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  \/  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
34 df-or 360 . . . . 5  |-  ( ( A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  \/  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B )  <-> 
( -.  A ( ( ( RR  u.  { 
-oo } )  X.  {  +oo } )  u.  ( {  -oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3532, 33, 343bitri 263 . . . 4  |-  ( A  <  B  <->  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3629, 35syl6rbbr 256 . . 3  |-  ( -.  A ( ( ( RR  u.  {  -oo } )  X.  {  +oo } )  u.  ( { 
-oo }  X.  RR ) ) B  -> 
( A  <  B  <->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
3728, 36syl 16 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
38 breq12 4158 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <RR  y  <->  A  <RR  B ) )
39 df-3an 938 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
4039opabbii 4213 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4138, 40brab2ga 4891 . . 3  |-  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B ) )
4241baibr 873 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B ) )
4337, 42bitr4d 248 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    e/ wnel 2551    u. cun 3261   {csn 3757   class class class wbr 4153   {copab 4206    X. cxp 4816   RRcr 8922    <RR cltrr 8927    +oocpnf 9050    -oocmnf 9051    < clt 9053
This theorem is referenced by:  axlttri  9080  axlttrn  9081  axltadd  9082  axmulgt0  9083  axsup  9084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-ltxr 9058
  Copyright terms: Public domain W3C validator