MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubss Structured version   Unicode version

Theorem lubss 14549
Description: Subset law for least upper bounds. (chsupss 22845 analog.) (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
lublem.b  |-  B  =  ( Base `  K
)
lublem.l  |-  .<_  =  ( le `  K )
lublem.u  |-  U  =  ( lub `  K
)
Assertion
Ref Expression
lubss  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( U `  S )  .<_  ( U `  T
) )

Proof of Theorem lubss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1 958 . . 3  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  K  e.  CLat )
2 sstr2 3356 . . . . 5  |-  ( S 
C_  T  ->  ( T  C_  B  ->  S  C_  B ) )
32impcom 421 . . . 4  |-  ( ( T  C_  B  /\  S  C_  T )  ->  S  C_  B )
433adant1 976 . . 3  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  S  C_  B )
5 lublem.b . . . . 5  |-  B  =  ( Base `  K
)
6 lublem.u . . . . 5  |-  U  =  ( lub `  K
)
75, 6clatlubcl 14541 . . . 4  |-  ( ( K  e.  CLat  /\  T  C_  B )  ->  ( U `  T )  e.  B )
873adant3 978 . . 3  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( U `  T )  e.  B )
91, 4, 83jca 1135 . 2  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( K  e.  CLat  /\  S  C_  B  /\  ( U `
 T )  e.  B ) )
10 simpl1 961 . . . 4  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  K  e.  CLat )
11 simpl2 962 . . . 4  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  T  C_  B )
12 ssel2 3344 . . . . 5  |-  ( ( S  C_  T  /\  y  e.  S )  ->  y  e.  T )
13123ad2antl3 1122 . . . 4  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  y  e.  T )
14 lublem.l . . . . 5  |-  .<_  =  ( le `  K )
155, 14, 6lubub 14547 . . . 4  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  y  e.  T )  ->  y  .<_  ( U `  T
) )
1610, 11, 13, 15syl3anc 1185 . . 3  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  y  .<_  ( U `  T ) )
1716ralrimiva 2790 . 2  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  A. y  e.  S  y  .<_  ( U `  T ) )
185, 14, 6lubl 14548 . 2  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  ( U `
 T )  e.  B )  ->  ( A. y  e.  S  y  .<_  ( U `  T )  ->  ( U `  S )  .<_  ( U `  T
) ) )
199, 17, 18sylc 59 1  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( U `  S )  .<_  ( U `  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2706    C_ wss 3321   class class class wbr 4213   ` cfv 5455   Basecbs 13470   lecple 13537   lubclub 14400   CLatccla 14537
This theorem is referenced by:  lubel  14550  atlatmstc  30118  atlatle  30119  pmaple  30559  paddunN  30725  poml4N  30751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-undef 6544  df-riota 6550  df-lub 14432  df-clat 14538
  Copyright terms: Public domain W3C validator