MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubun Unicode version

Theorem lubun 14227
Description: The LUB of a union. (Contributed by NM, 5-Mar-2012.)
Hypotheses
Ref Expression
lubun.b  |-  B  =  ( Base `  K
)
lubun.j  |-  .\/  =  ( join `  K )
lubun.u  |-  U  =  ( lub `  K
)
Assertion
Ref Expression
lubun  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( U `  ( S  u.  T ) )  =  ( ( U `  S )  .\/  ( U `  T )
) )

Proof of Theorem lubun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  K  e.  CLat )
2 unss 3349 . . . . 5  |-  ( ( S  C_  B  /\  T  C_  B )  <->  ( S  u.  T )  C_  B
)
32biimpi 186 . . . 4  |-  ( ( S  C_  B  /\  T  C_  B )  -> 
( S  u.  T
)  C_  B )
433adant1 973 . . 3  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( S  u.  T )  C_  B )
5 lubun.b . . . 4  |-  B  =  ( Base `  K
)
6 eqid 2283 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
7 lubun.u . . . 4  |-  U  =  ( lub `  K
)
85, 6, 7lubval 14113 . . 3  |-  ( ( K  e.  CLat  /\  ( S  u.  T )  C_  B )  ->  ( U `  ( S  u.  T ) )  =  ( iota_ x  e.  B
( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) ) )
91, 4, 8syl2anc 642 . 2  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( U `  ( S  u.  T ) )  =  ( iota_ x  e.  B
( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) ) )
10 clatl 14220 . . . . 5  |-  ( K  e.  CLat  ->  K  e. 
Lat )
11103ad2ant1 976 . . . 4  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  K  e.  Lat )
125, 7clatlubcl 14217 . . . . 5  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( U `  S )  e.  B )
13123adant3 975 . . . 4  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( U `  S )  e.  B )
145, 7clatlubcl 14217 . . . . 5  |-  ( ( K  e.  CLat  /\  T  C_  B )  ->  ( U `  T )  e.  B )
15143adant2 974 . . . 4  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( U `  T )  e.  B )
16 lubun.j . . . . 5  |-  .\/  =  ( join `  K )
175, 16latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  ( U `  S )  e.  B  /\  ( U `  T )  e.  B )  ->  (
( U `  S
)  .\/  ( U `  T ) )  e.  B )
1811, 13, 15, 17syl3anc 1182 . . 3  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  (
( U `  S
)  .\/  ( U `  T ) )  e.  B )
19 simpl1 958 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  K  e.  CLat )
2019, 10syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  K  e.  Lat )
21 simpl2 959 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  S  C_  B )
22 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  y  e.  S )
2321, 22sseldd 3181 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  y  e.  B )
2419, 21, 12syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  ( U `  S
)  e.  B )
25 simpl3 960 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  T  C_  B )
2619, 25, 14syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  ( U `  T
)  e.  B )
2720, 24, 26, 17syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  ( ( U `  S )  .\/  ( U `  T )
)  e.  B )
285, 6, 7lubel 14226 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  CLat  /\  y  e.  S  /\  S  C_  B )  ->  y
( le `  K
) ( U `  S ) )
2919, 22, 21, 28syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  y ( le `  K ) ( U `
 S ) )
305, 6, 16latlej1 14166 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( U `  S )  e.  B  /\  ( U `  T )  e.  B )  ->  ( U `  S )
( le `  K
) ( ( U `
 S )  .\/  ( U `  T ) ) )
3120, 24, 26, 30syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  ( U `  S
) ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) )
325, 6, 20, 23, 24, 27, 29, 31lattrd 14164 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  S )  ->  y ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) )
3332ralrimiva 2626 . . . . . . . . . . . 12  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  A. y  e.  S  y ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) ) )
3411adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  K  e.  Lat )
35 simpl3 960 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  T  C_  B )
36 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  y  e.  T )
3735, 36sseldd 3181 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  y  e.  B )
38 simpl1 958 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  K  e.  CLat )
3938, 35, 14syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  ( U `  T
)  e.  B )
4018adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  ( ( U `  S )  .\/  ( U `  T )
)  e.  B )
415, 6, 7lubel 14226 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  CLat  /\  y  e.  T  /\  T  C_  B )  ->  y
( le `  K
) ( U `  T ) )
4238, 36, 35, 41syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  y ( le `  K ) ( U `
 T ) )
43 simpl2 959 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  S  C_  B )
4438, 43, 12syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  ( U `  S
)  e.  B )
455, 6, 16latlej2 14167 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( U `  S )  e.  B  /\  ( U `  T )  e.  B )  ->  ( U `  T )
( le `  K
) ( ( U `
 S )  .\/  ( U `  T ) ) )
4634, 44, 39, 45syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  ( U `  T
) ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) )
475, 6, 34, 37, 39, 40, 42, 46lattrd 14164 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  T )  ->  y ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) )
4847ralrimiva 2626 . . . . . . . . . . . 12  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  A. y  e.  T  y ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) ) )
49 ralunb 3356 . . . . . . . . . . . 12  |-  ( A. y  e.  ( S  u.  T ) y ( le `  K ) ( ( U `  S )  .\/  ( U `  T )
)  <->  ( A. y  e.  S  y ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) )  /\  A. y  e.  T  y ( le `  K
) ( ( U `
 S )  .\/  ( U `  T ) ) ) )
5033, 48, 49sylanbrc 645 . . . . . . . . . . 11  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  A. y  e.  ( S  u.  T
) y ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) ) )
51 breq2 4027 . . . . . . . . . . . . . . 15  |-  ( z  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( y
( le `  K
) z  <->  y ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) ) ) )
5251ralbidv 2563 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  <->  A. y  e.  ( S  u.  T ) y ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) ) )
53 breq2 4027 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( x
( le `  K
) z  <->  x ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) ) ) )
5452, 53imbi12d 311 . . . . . . . . . . . . 13  |-  ( z  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( ( A. y  e.  ( S  u.  T )
y ( le `  K ) z  ->  x ( le `  K ) z )  <-> 
( A. y  e.  ( S  u.  T
) y ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) )  ->  x ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) ) ) )
5554rspcv 2880 . . . . . . . . . . . 12  |-  ( ( ( U `  S
)  .\/  ( U `  T ) )  e.  B  ->  ( A. z  e.  B  ( A. y  e.  ( S  u.  T )
y ( le `  K ) z  ->  x ( le `  K ) z )  ->  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) )  ->  x ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) ) ) )
5618, 55syl 15 . . . . . . . . . . 11  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z )  ->  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) )  ->  x ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) ) ) )
5750, 56mpid 37 . . . . . . . . . 10  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z )  ->  x ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) ) ) )
5857imp 418 . . . . . . . . 9  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) )  ->  x ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) ) )
5958ad2ant2rl 729 . . . . . . . 8  |-  ( ( ( ( K  e. 
CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B
)  /\  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) ) )  ->  x ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) )
60 ralunb 3356 . . . . . . . . . . 11  |-  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  <->  ( A. y  e.  S  y ( le `  K ) x  /\  A. y  e.  T  y ( le
`  K ) x ) )
61 simpl1 958 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  K  e.  CLat )
62 simpl2 959 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  S  C_  B )
63 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  x  e.  B )
645, 6, 7lubl 14224 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  x  e.  B )  ->  ( A. y  e.  S  y ( le `  K ) x  -> 
( U `  S
) ( le `  K ) x ) )
6561, 62, 63, 64syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( A. y  e.  S  y ( le
`  K ) x  ->  ( U `  S ) ( le
`  K ) x ) )
66 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  T  C_  B )
675, 6, 7lubl 14224 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  x  e.  B )  ->  ( A. y  e.  T  y ( le `  K ) x  -> 
( U `  T
) ( le `  K ) x ) )
6861, 66, 63, 67syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( A. y  e.  T  y ( le
`  K ) x  ->  ( U `  T ) ( le
`  K ) x ) )
6965, 68anim12d 546 . . . . . . . . . . . 12  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( A. y  e.  S  y ( le `  K ) x  /\  A. y  e.  T  y ( le
`  K ) x )  ->  ( ( U `  S )
( le `  K
) x  /\  ( U `  T )
( le `  K
) x ) ) )
7061, 10syl 15 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  K  e.  Lat )
7113adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( U `  S
)  e.  B )
7215adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( U `  T
)  e.  B )
735, 6, 16latjle12 14168 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( ( U `  S )  e.  B  /\  ( U `  T
)  e.  B  /\  x  e.  B )
)  ->  ( (
( U `  S
) ( le `  K ) x  /\  ( U `  T ) ( le `  K
) x )  <->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) x ) )
7470, 71, 72, 63, 73syl13anc 1184 . . . . . . . . . . . 12  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( ( U `
 S ) ( le `  K ) x  /\  ( U `
 T ) ( le `  K ) x )  <->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) x ) )
7569, 74sylibd 205 . . . . . . . . . . 11  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( A. y  e.  S  y ( le `  K ) x  /\  A. y  e.  T  y ( le
`  K ) x )  ->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) x ) )
7660, 75syl5bi 208 . . . . . . . . . 10  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  ->  ( ( U `
 S )  .\/  ( U `  T ) ) ( le `  K ) x ) )
7776imp 418 . . . . . . . . 9  |-  ( ( ( ( K  e. 
CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B
)  /\  A. y  e.  ( S  u.  T
) y ( le
`  K ) x )  ->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) x )
7877adantrr 697 . . . . . . . 8  |-  ( ( ( ( K  e. 
CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B
)  /\  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) ) )  -> 
( ( U `  S )  .\/  ( U `  T )
) ( le `  K ) x )
7918adantr 451 . . . . . . . . . 10  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( U `  S )  .\/  ( U `  T )
)  e.  B )
805, 6latasymb 14160 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  ( ( U `  S )  .\/  ( U `  T )
)  e.  B )  ->  ( ( x ( le `  K
) ( ( U `
 S )  .\/  ( U `  T ) )  /\  ( ( U `  S ) 
.\/  ( U `  T ) ) ( le `  K ) x )  <->  x  =  ( ( U `  S )  .\/  ( U `  T )
) ) )
8170, 63, 79, 80syl3anc 1182 . . . . . . . . 9  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( x ( le `  K ) ( ( U `  S )  .\/  ( U `  T )
)  /\  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) x )  <->  x  =  (
( U `  S
)  .\/  ( U `  T ) ) ) )
8281adantr 451 . . . . . . . 8  |-  ( ( ( ( K  e. 
CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B
)  /\  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) ) )  -> 
( ( x ( le `  K ) ( ( U `  S )  .\/  ( U `  T )
)  /\  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) x )  <->  x  =  (
( U `  S
)  .\/  ( U `  T ) ) ) )
8359, 78, 82mpbi2and 887 . . . . . . 7  |-  ( ( ( ( K  e. 
CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B
)  /\  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) ) )  ->  x  =  ( ( U `  S )  .\/  ( U `  T
) ) )
8483ex 423 . . . . . 6  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) )  ->  x  =  ( ( U `
 S )  .\/  ( U `  T ) ) ) )
85 elun 3316 . . . . . . . . . 10  |-  ( y  e.  ( S  u.  T )  <->  ( y  e.  S  \/  y  e.  T ) )
8632, 47jaodan 760 . . . . . . . . . 10  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  ( y  e.  S  \/  y  e.  T
) )  ->  y
( le `  K
) ( ( U `
 S )  .\/  ( U `  T ) ) )
8785, 86sylan2b 461 . . . . . . . . 9  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  y  e.  ( S  u.  T ) )  -> 
y ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) )
8887ralrimiva 2626 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  A. y  e.  ( S  u.  T
) y ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) ) )
89 ralunb 3356 . . . . . . . . . . 11  |-  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  <->  ( A. y  e.  S  y ( le `  K ) z  /\  A. y  e.  T  y ( le
`  K ) z ) )
90 simpl1 958 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  K  e.  CLat )
91 simpl2 959 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  S  C_  B )
92 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  z  e.  B )
935, 6, 7lubl 14224 . . . . . . . . . . . . 13  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  z  e.  B )  ->  ( A. y  e.  S  y ( le `  K ) z  -> 
( U `  S
) ( le `  K ) z ) )
9490, 91, 92, 93syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( A. y  e.  S  y ( le
`  K ) z  ->  ( U `  S ) ( le
`  K ) z ) )
95 simpl3 960 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  T  C_  B )
965, 6, 7lubl 14224 . . . . . . . . . . . . 13  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  z  e.  B )  ->  ( A. y  e.  T  y ( le `  K ) z  -> 
( U `  T
) ( le `  K ) z ) )
9790, 95, 92, 96syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( A. y  e.  T  y ( le
`  K ) z  ->  ( U `  T ) ( le
`  K ) z ) )
9894, 97anim12d 546 . . . . . . . . . . 11  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( ( A. y  e.  S  y ( le `  K ) z  /\  A. y  e.  T  y ( le
`  K ) z )  ->  ( ( U `  S )
( le `  K
) z  /\  ( U `  T )
( le `  K
) z ) ) )
9989, 98syl5bi 208 . . . . . . . . . 10  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  ( ( U `
 S ) ( le `  K ) z  /\  ( U `
 T ) ( le `  K ) z ) ) )
10090, 10syl 15 . . . . . . . . . . 11  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  K  e.  Lat )
10190, 91, 12syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( U `  S
)  e.  B )
10290, 95, 14syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( U `  T
)  e.  B )
1035, 6, 16latjle12 14168 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( ( U `  S )  e.  B  /\  ( U `  T
)  e.  B  /\  z  e.  B )
)  ->  ( (
( U `  S
) ( le `  K ) z  /\  ( U `  T ) ( le `  K
) z )  <->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) z ) )
104100, 101, 102, 92, 103syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( ( ( U `
 S ) ( le `  K ) z  /\  ( U `
 T ) ( le `  K ) z )  <->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) z ) )
10599, 104sylibd 205 . . . . . . . . 9  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  z  e.  B )  ->  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  ( ( U `
 S )  .\/  ( U `  T ) ) ( le `  K ) z ) )
106105ralrimiva 2626 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) z ) )
107 breq2 4027 . . . . . . . . . . 11  |-  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( y
( le `  K
) x  <->  y ( le `  K ) ( ( U `  S
)  .\/  ( U `  T ) ) ) )
108107ralbidv 2563 . . . . . . . . . 10  |-  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  <->  A. y  e.  ( S  u.  T ) y ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) ) ) )
109 breq1 4026 . . . . . . . . . . . 12  |-  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( x
( le `  K
) z  <->  ( ( U `  S )  .\/  ( U `  T
) ) ( le
`  K ) z ) )
110109imbi2d 307 . . . . . . . . . . 11  |-  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( ( A. y  e.  ( S  u.  T )
y ( le `  K ) z  ->  x ( le `  K ) z )  <-> 
( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  ( ( U `
 S )  .\/  ( U `  T ) ) ( le `  K ) z ) ) )
111110ralbidv 2563 . . . . . . . . . 10  |-  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( A. z  e.  B  ( A. y  e.  ( S  u.  T )
y ( le `  K ) z  ->  x ( le `  K ) z )  <->  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  -> 
( ( U `  S )  .\/  ( U `  T )
) ( le `  K ) z ) ) )
112108, 111anbi12d 691 . . . . . . . . 9  |-  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( ( A. y  e.  ( S  u.  T )
y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) )  <->  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) ( ( U `  S
)  .\/  ( U `  T ) )  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  -> 
( ( U `  S )  .\/  ( U `  T )
) ( le `  K ) z ) ) ) )
113112biimprcd 216 . . . . . . . 8  |-  ( ( A. y  e.  ( S  u.  T ) y ( le `  K ) ( ( U `  S ) 
.\/  ( U `  T ) )  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  -> 
( ( U `  S )  .\/  ( U `  T )
) ( le `  K ) z ) )  ->  ( x  =  ( ( U `
 S )  .\/  ( U `  T ) )  ->  ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) ) ) )
11488, 106, 113syl2anc 642 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  (
x  =  ( ( U `  S ) 
.\/  ( U `  T ) )  -> 
( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) ) )
115114adantr 451 . . . . . 6  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( x  =  ( ( U `  S
)  .\/  ( U `  T ) )  -> 
( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) ) )
11684, 115impbid 183 . . . . 5  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  x  e.  B )  ->  ( ( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) )  <->  x  =  ( ( U `  S )  .\/  ( U `  T )
) ) )
1171163adant2 974 . . . 4  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  ( ( U `  S )  .\/  ( U `  T )
)  e.  B  /\  x  e.  B )  ->  ( ( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) )  <->  x  =  ( ( U `  S )  .\/  ( U `  T )
) ) )
118117riota5OLD 6331 . . 3  |-  ( ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  /\  ( ( U `  S )  .\/  ( U `  T )
)  e.  B )  ->  ( iota_ x  e.  B ( A. y  e.  ( S  u.  T
) y ( le
`  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T
) y ( le
`  K ) z  ->  x ( le
`  K ) z ) ) )  =  ( ( U `  S )  .\/  ( U `  T )
) )
11918, 118mpdan 649 . 2  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( iota_ x  e.  B ( A. y  e.  ( S  u.  T ) y ( le `  K ) x  /\  A. z  e.  B  ( A. y  e.  ( S  u.  T ) y ( le `  K ) z  ->  x ( le `  K ) z ) ) )  =  ( ( U `  S
)  .\/  ( U `  T ) ) )
1209, 119eqtrd 2315 1  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  T  C_  B )  ->  ( U `  ( S  u.  T ) )  =  ( ( U `  S )  .\/  ( U `  T )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    u. cun 3150    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   iota_crio 6297   Basecbs 13148   lecple 13215   lubclub 14076   joincjn 14078   Latclat 14151   CLatccla 14213
This theorem is referenced by:  paddunN  30116  poldmj1N  30117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-join 14110  df-meet 14111  df-lat 14152  df-clat 14214
  Copyright terms: Public domain W3C validator