MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luklem1 Unicode version

Theorem luklem1 1413
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 23-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
luklem1.1  |-  ( ph  ->  ps )
luklem1.2  |-  ( ps 
->  ch )
Assertion
Ref Expression
luklem1  |-  ( ph  ->  ch )

Proof of Theorem luklem1
StepHypRef Expression
1 luklem1.2 . 2  |-  ( ps 
->  ch )
2 luklem1.1 . . 3  |-  ( ph  ->  ps )
3 luk-1 1410 . . 3  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
42, 3ax-mp 8 . 2  |-  ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )
51, 4ax-mp 8 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  luklem2  1414  luklem3  1415  luklem4  1416  luklem5  1417  luklem6  1418  luklem7  1419  ax2  1422  ax3  1423
This theorem was proved from axioms:  ax-mp 8  ax-meredith 1396
  Copyright terms: Public domain W3C validator