Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoln0N Structured version   Unicode version

Theorem lvoln0N 30289
Description: A lattice volume is non-zero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lvoln0.z  |-  .0.  =  ( 0. `  K )
lvoln0.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lvoln0N  |-  ( ( K  e.  HL  /\  X  e.  V )  ->  X  =/=  .0.  )

Proof of Theorem lvoln0N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
21atex 30104 . . . 4  |-  ( K  e.  HL  ->  ( Atoms `  K )  =/=  (/) )
3 n0 3629 . . . 4  |-  ( (
Atoms `  K )  =/=  (/) 
<->  E. p  p  e.  ( Atoms `  K )
)
42, 3sylib 189 . . 3  |-  ( K  e.  HL  ->  E. p  p  e.  ( Atoms `  K ) )
54adantr 452 . 2  |-  ( ( K  e.  HL  /\  X  e.  V )  ->  E. p  p  e.  ( Atoms `  K )
)
6 eqid 2435 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
7 lvoln0.v . . . . 5  |-  V  =  ( LVols `  K )
86, 1, 7lvolnleat 30281 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V  /\  p  e.  ( Atoms `  K ) )  ->  -.  X ( le `  K ) p )
983expa 1153 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  -.  X ( le `  K ) p )
10 hlop 30061 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
1110ad2antrr 707 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  K  e.  OP )
12 eqid 2435 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1312, 1atbase 29988 . . . . . . 7  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  ( Base `  K )
)
1413adantl 453 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  p  e.  (
Base `  K )
)
15 lvoln0.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
1612, 6, 15op0le 29885 . . . . . 6  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  ->  .0.  ( le `  K
) p )
1711, 14, 16syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  .0.  ( le `  K ) p )
18 breq1 4207 . . . . 5  |-  ( X  =  .0.  ->  ( X ( le `  K ) p  <->  .0.  ( le `  K ) p ) )
1917, 18syl5ibrcom 214 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  ( X  =  .0.  ->  X ( le `  K ) p ) )
2019necon3bd 2635 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  ( -.  X
( le `  K
) p  ->  X  =/=  .0.  ) )
219, 20mpd 15 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  p  e.  (
Atoms `  K ) )  ->  X  =/=  .0.  )
225, 21exlimddv 1648 1  |-  ( ( K  e.  HL  /\  X  e.  V )  ->  X  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   (/)c0 3620   class class class wbr 4204   ` cfv 5446   Basecbs 13459   lecple 13526   0.cp0 14456   OPcops 29871   Atomscatm 29962   HLchlt 30049   LVolsclvol 30191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-llines 30196  df-lplanes 30197  df-lvols 30198
  Copyright terms: Public domain W3C validator