Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelpln Unicode version

Theorem lvolnlelpln 30396
Description: A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelpln.l  |-  .<_  =  ( le `  K )
lvolnlelpln.p  |-  P  =  ( LPlanes `  K )
lvolnlelpln.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lvolnlelpln  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  -.  X  .<_  Y )

Proof of Theorem lvolnlelpln
Dummy variables  r 
q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 957 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  Y  e.  P )
2 eqid 2296 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
3 lvolnlelpln.l . . . . 5  |-  .<_  =  ( le `  K )
4 eqid 2296 . . . . 5  |-  ( join `  K )  =  (
join `  K )
5 eqid 2296 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
6 lvolnlelpln.p . . . . 5  |-  P  =  ( LPlanes `  K )
72, 3, 4, 5, 6islpln2 30347 . . . 4  |-  ( K  e.  HL  ->  ( Y  e.  P  <->  ( Y  e.  ( Base `  K
)  /\  E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q (
join `  K )
r )  /\  Y  =  ( ( q ( join `  K
) r ) (
join `  K )
s ) ) ) ) )
873ad2ant1 976 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  ( Y  e.  P  <->  ( Y  e.  ( Base `  K )  /\  E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K
) r )  /\  Y  =  ( (
q ( join `  K
) r ) (
join `  K )
s ) ) ) ) )
91, 8mpbid 201 . 2  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  ( Y  e.  (
Base `  K )  /\  E. q  e.  (
Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K )
( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K
) r )  /\  Y  =  ( (
q ( join `  K
) r ) (
join `  K )
s ) ) ) )
10 simp1l1 1048 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  K  e.  HL )
11 simp1l2 1049 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  X  e.  V )
12 simp1r 980 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  q  e.  ( Atoms `  K )
)
13 simp2l 981 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  r  e.  ( Atoms `  K )
)
14 simp2r 982 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  s  e.  ( Atoms `  K )
)
15 lvolnlelpln.v . . . . . . . . 9  |-  V  =  ( LVols `  K )
163, 4, 5, 15lvolnle3at 30393 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  V )  /\  ( q  e.  ( Atoms `  K )  /\  r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) ) )  ->  -.  X  .<_  ( ( q ( join `  K ) r ) ( join `  K
) s ) )
1710, 11, 12, 13, 14, 16syl23anc 1189 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  -.  X  .<_  ( ( q (
join `  K )
r ) ( join `  K ) s ) )
18 simp33 993 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  Y  =  ( ( q (
join `  K )
r ) ( join `  K ) s ) )
1918breq2d 4051 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  ( X  .<_  Y  <->  X  .<_  ( ( q ( join `  K
) r ) (
join `  K )
s ) ) )
2017, 19mtbird 292 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K )
)  /\  ( r  e.  ( Atoms `  K )  /\  s  e.  ( Atoms `  K ) )  /\  ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K ) r )  /\  Y  =  ( ( q ( join `  K ) r ) ( join `  K
) s ) ) )  ->  -.  X  .<_  Y )
21203exp 1150 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K ) )  ->  ( ( r  e.  ( Atoms `  K
)  /\  s  e.  ( Atoms `  K )
)  ->  ( (
q  =/=  r  /\  -.  s  .<_  ( q ( join `  K
) r )  /\  Y  =  ( (
q ( join `  K
) r ) (
join `  K )
s ) )  ->  -.  X  .<_  Y ) ) )
2221rexlimdvv 2686 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  /\  q  e.  ( Atoms `  K ) )  ->  ( E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q ( join `  K
) r )  /\  Y  =  ( (
q ( join `  K
) r ) (
join `  K )
s ) )  ->  -.  X  .<_  Y ) )
2322rexlimdva 2680 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  ( E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q (
join `  K )
r )  /\  Y  =  ( ( q ( join `  K
) r ) (
join `  K )
s ) )  ->  -.  X  .<_  Y ) )
2423adantld 453 . 2  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  ( ( Y  e.  ( Base `  K
)  /\  E. q  e.  ( Atoms `  K ) E. r  e.  ( Atoms `  K ) E. s  e.  ( Atoms `  K ) ( q  =/=  r  /\  -.  s  .<_  ( q (
join `  K )
r )  /\  Y  =  ( ( q ( join `  K
) r ) (
join `  K )
s ) ) )  ->  -.  X  .<_  Y ) )
259, 24mpd 14 1  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  P )  ->  -.  X  .<_  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Atomscatm 30075   HLchlt 30162   LPlanesclpl 30303   LVolsclvol 30304
This theorem is referenced by:  lvolnelpln  30401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311
  Copyright terms: Public domain W3C validator