Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnltN Unicode version

Theorem lvolnltN 30100
Description: Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lvolnlt.s  |-  .<  =  ( lt `  K )
lvolnlt.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lvolnltN  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  -.  X  .<  Y )

Proof of Theorem lvolnltN
StepHypRef Expression
1 lvolnlt.s . . . . 5  |-  .<  =  ( lt `  K )
21pltirr 14375 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V )  ->  -.  X  .<  X )
323adant3 977 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  -.  X  .<  X )
4 breq2 4176 . . . 4  |-  ( X  =  Y  ->  ( X  .<  X  <->  X  .<  Y ) )
54notbid 286 . . 3  |-  ( X  =  Y  ->  ( -.  X  .<  X  <->  -.  X  .<  Y ) )
63, 5syl5ibcom 212 . 2  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  =  Y  ->  -.  X  .<  Y ) )
7 eqid 2404 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
87, 1pltle 14373 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .<  Y  ->  X ( le `  K ) Y ) )
9 lvolnlt.v . . . . 5  |-  V  =  ( LVols `  K )
107, 9lvolcmp 30099 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X ( le
`  K ) Y  <-> 
X  =  Y ) )
118, 10sylibd 206 . . 3  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .<  Y  ->  X  =  Y )
)
1211necon3ad 2603 . 2  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  =/=  Y  ->  -.  X  .<  Y ) )
136, 12pm2.61dne 2644 1  |-  ( ( K  e.  HL  /\  X  e.  V  /\  Y  e.  V )  ->  -.  X  .<  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413   lecple 13491   ltcplt 14353   HLchlt 29833   LVolsclvol 29975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982
  Copyright terms: Public domain W3C validator