Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Unicode version

Theorem lzenom 26849
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  om )

Proof of Theorem lzenom
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 10033 . . . 4  |-  ZZ  e.  _V
2 difexg 4162 . . . 4  |-  ( ZZ  e.  _V  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  e.  _V )
31, 2mp1i 11 . . 3  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  e.  _V )
4 nnex 9752 . . . 4  |-  NN  e.  _V
54a1i 10 . . 3  |-  ( N  e.  ZZ  ->  NN  e.  _V )
6 ovex 5883 . . . 4  |-  ( ( N  +  1 )  -  a )  e. 
_V
76a1ii 24 . . 3  |-  ( N  e.  ZZ  ->  (
a  e.  ( ZZ 
\  ( ZZ>= `  ( N  +  1 ) ) )  ->  (
( N  +  1 )  -  a )  e.  _V ) )
8 ovex 5883 . . . 4  |-  ( ( N  +  1 )  -  b )  e. 
_V
98a1ii 24 . . 3  |-  ( N  e.  ZZ  ->  (
b  e.  NN  ->  ( ( N  +  1 )  -  b )  e.  _V ) )
10 simpl 443 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  N  e.  ZZ )
1110peano2zd 10120 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( N  +  1 )  e.  ZZ )
12 simprl 732 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  e.  ZZ )
1311, 12zsubcld 10122 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( ( N  +  1 )  -  a )  e.  ZZ )
14 zre 10028 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  RR )
1514ad2antrl 708 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  e.  RR )
1611zred 10117 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( N  +  1 )  e.  RR )
17 1re 8837 . . . . . . . . . 10  |-  1  e.  RR
1817a1i 10 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  1  e.  RR )
19 simprr 733 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  <_  N )
20 zcn 10029 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
2120adantr 451 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  N  e.  CC )
22 ax-1cn 8795 . . . . . . . . . . 11  |-  1  e.  CC
23 pncan 9057 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
2421, 22, 23sylancl 643 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( ( N  +  1 )  -  1 )  =  N )
2519, 24breqtrrd 4049 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  <_  ( ( N  +  1 )  -  1 ) )
2615, 16, 18, 25lesubd 9376 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  1  <_  ( ( N  +  1 )  -  a ) )
2711zcnd 10118 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( N  +  1 )  e.  CC )
28 zcn 10029 . . . . . . . . . . 11  |-  ( a  e.  ZZ  ->  a  e.  CC )
2928ad2antrl 708 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  e.  CC )
3027, 29nncand 9162 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( ( N  +  1 )  -  ( ( N  +  1 )  -  a ) )  =  a )
3130eqcomd 2288 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  a ) ) )
3213, 26, 31jca31 520 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( (
( ( N  + 
1 )  -  a
)  e.  ZZ  /\  1  <_  ( ( N  +  1 )  -  a ) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  +  1 )  -  a ) ) ) )
3332adantrr 697 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )  ->  ( ( ( ( N  +  1 )  -  a )  e.  ZZ  /\  1  <_  ( ( N  + 
1 )  -  a
) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  a
) ) ) )
34 eleq1 2343 . . . . . . . . 9  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
b  e.  ZZ  <->  ( ( N  +  1 )  -  a )  e.  ZZ ) )
35 breq2 4027 . . . . . . . . 9  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
1  <_  b  <->  1  <_  ( ( N  +  1 )  -  a ) ) )
3634, 35anbi12d 691 . . . . . . . 8  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
( b  e.  ZZ  /\  1  <_  b )  <->  ( ( ( N  + 
1 )  -  a
)  e.  ZZ  /\  1  <_  ( ( N  +  1 )  -  a ) ) ) )
37 oveq2 5866 . . . . . . . . 9  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
( N  +  1 )  -  b )  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  a
) ) )
3837eqeq2d 2294 . . . . . . . 8  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
a  =  ( ( N  +  1 )  -  b )  <->  a  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  a ) ) ) )
3936, 38anbi12d 691 . . . . . . 7  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) )  <->  ( (
( ( N  + 
1 )  -  a
)  e.  ZZ  /\  1  <_  ( ( N  +  1 )  -  a ) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  +  1 )  -  a ) ) ) ) )
4039ad2antll 709 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )  ->  ( ( ( b  e.  ZZ  /\  1  <_  b )  /\  a  =  ( ( N  +  1 )  -  b ) )  <-> 
( ( ( ( N  +  1 )  -  a )  e.  ZZ  /\  1  <_ 
( ( N  + 
1 )  -  a
) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  a
) ) ) ) )
4133, 40mpbird 223 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )  ->  ( ( b  e.  ZZ  /\  1  <_  b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )
42 simpl 443 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  N  e.  ZZ )
4342peano2zd 10120 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( N  +  1 )  e.  ZZ )
44 simprl 732 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  e.  ZZ )
4543, 44zsubcld 10122 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  b )  e.  ZZ )
4643zred 10117 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( N  +  1 )  e.  RR )
47 zre 10028 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  RR )
4847adantr 451 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  N  e.  RR )
49 zre 10028 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  RR )
5049ad2antrl 708 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  e.  RR )
5148recnd 8861 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  N  e.  CC )
52 pncan2 9058 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  N
)  =  1 )
5351, 22, 52sylancl 643 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  N )  =  1 )
54 simprr 733 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  1  <_  b )
5553, 54eqbrtrd 4043 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  N )  <_ 
b )
5646, 48, 50, 55subled 9375 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  b )  <_  N )
5743zcnd 10118 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( N  +  1 )  e.  CC )
58 zcn 10029 . . . . . . . . . . 11  |-  ( b  e.  ZZ  ->  b  e.  CC )
5958ad2antrl 708 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  e.  CC )
6057, 59nncand 9162 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  ( ( N  +  1 )  -  b ) )  =  b )
6160eqcomd 2288 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  b ) ) )
6245, 56, 61jca31 520 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( (
( ( N  + 
1 )  -  b
)  e.  ZZ  /\  ( ( N  + 
1 )  -  b
)  <_  N )  /\  b  =  (
( N  +  1 )  -  ( ( N  +  1 )  -  b ) ) ) )
6362adantrr 697 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )  ->  ( ( ( ( N  +  1 )  -  b )  e.  ZZ  /\  (
( N  +  1 )  -  b )  <_  N )  /\  b  =  ( ( N  +  1 )  -  ( ( N  +  1 )  -  b ) ) ) )
64 eleq1 2343 . . . . . . . . 9  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
a  e.  ZZ  <->  ( ( N  +  1 )  -  b )  e.  ZZ ) )
65 breq1 4026 . . . . . . . . 9  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
a  <_  N  <->  ( ( N  +  1 )  -  b )  <_  N ) )
6664, 65anbi12d 691 . . . . . . . 8  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
( a  e.  ZZ  /\  a  <_  N )  <->  ( ( ( N  + 
1 )  -  b
)  e.  ZZ  /\  ( ( N  + 
1 )  -  b
)  <_  N )
) )
67 oveq2 5866 . . . . . . . . 9  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
( N  +  1 )  -  a )  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  b
) ) )
6867eqeq2d 2294 . . . . . . . 8  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
b  =  ( ( N  +  1 )  -  a )  <->  b  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  b ) ) ) )
6966, 68anbi12d 691 . . . . . . 7  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) )  <->  ( (
( ( N  + 
1 )  -  b
)  e.  ZZ  /\  ( ( N  + 
1 )  -  b
)  <_  N )  /\  b  =  (
( N  +  1 )  -  ( ( N  +  1 )  -  b ) ) ) ) )
7069ad2antll 709 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )  ->  ( ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) )  <-> 
( ( ( ( N  +  1 )  -  b )  e.  ZZ  /\  ( ( N  +  1 )  -  b )  <_  N )  /\  b  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  b
) ) ) ) )
7163, 70mpbird 223 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )  ->  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )
7241, 71impbida 805 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) )  <->  ( (
b  e.  ZZ  /\  1  <_  b )  /\  a  =  ( ( N  +  1 )  -  b ) ) ) )
73 ellz1 26846 . . . . 5  |-  ( N  e.  ZZ  ->  (
a  e.  ( ZZ 
\  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( a  e.  ZZ  /\  a  <_  N ) ) )
7473anbi1d 685 . . . 4  |-  ( N  e.  ZZ  ->  (
( a  e.  ( ZZ  \  ( ZZ>= `  ( N  +  1
) ) )  /\  b  =  ( ( N  +  1 )  -  a ) )  <-> 
( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) ) )
75 elnnz1 10049 . . . . . 6  |-  ( b  e.  NN  <->  ( b  e.  ZZ  /\  1  <_ 
b ) )
7675a1i 10 . . . . 5  |-  ( N  e.  ZZ  ->  (
b  e.  NN  <->  ( b  e.  ZZ  /\  1  <_ 
b ) ) )
7776anbi1d 685 . . . 4  |-  ( N  e.  ZZ  ->  (
( b  e.  NN  /\  a  =  ( ( N  +  1 )  -  b ) )  <-> 
( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) ) )
7872, 74, 773bitr4d 276 . . 3  |-  ( N  e.  ZZ  ->  (
( a  e.  ( ZZ  \  ( ZZ>= `  ( N  +  1
) ) )  /\  b  =  ( ( N  +  1 )  -  a ) )  <-> 
( b  e.  NN  /\  a  =  ( ( N  +  1 )  -  b ) ) ) )
793, 5, 7, 9, 78en2d 6897 . 2  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  NN )
80 nnenom 11042 . 2  |-  NN  ~~  om
81 entr 6913 . 2  |-  ( ( ( ZZ  \  ( ZZ>=
`  ( N  + 
1 ) ) ) 
~~  NN  /\  NN  ~~  om )  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  om )
8279, 80, 81sylancl 643 1  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149   class class class wbr 4023   omcom 4656   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    <_ cle 8868    - cmin 9037   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230
This theorem is referenced by:  diophin  26852  diophren  26896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231
  Copyright terms: Public domain W3C validator