MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1lgs Unicode version

Theorem m1lgs 20601
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime  P iff  P  ==  1 mod 4. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  / L P )  =  1  <->  ( P  mod  4 )  =  1 ) )

Proof of Theorem m1lgs
StepHypRef Expression
1 1z 10053 . . . . . . . . . 10  |-  1  e.  ZZ
2 znegcl 10055 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
31, 2ax-mp 8 . . . . . . . . 9  |-  -u 1  e.  ZZ
4 oddprm 12868 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
54nnnn0d 10018 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
6 zexpcl 11118 . . . . . . . . 9  |-  ( (
-u 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  e.  ZZ )
73, 5, 6sylancr 644 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1 ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
87peano2zd 10120 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
9 eldifi 3298 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
10 prmnn 12761 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
119, 10syl 15 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
128, 11zmodcld 10990 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  NN0 )
1312nn0cnd 10020 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  CC )
14 ax-1cn 8795 . . . . . 6  |-  1  e.  CC
1514a1i 10 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  CC )
1613, 15, 15subaddd 9175 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
17 2re 9815 . . . . . . . 8  |-  2  e.  RR
1817a1i 10 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  RR )
1911nnrpd 10389 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  RR+ )
20 0re 8838 . . . . . . . . 9  |-  0  e.  RR
21 2pos 9828 . . . . . . . . 9  |-  0  <  2
2220, 17, 21ltleii 8941 . . . . . . . 8  |-  0  <_  2
2322a1i 10 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
0  <_  2 )
24 eldifsni 3750 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
2511nnred 9761 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  RR )
26 prmuz2 12776 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
279, 26syl 15 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
2 ) )
28 eluzle 10240 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
2927, 28syl 15 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <_  P )
3018, 25, 29leltned 8970 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  <  P  <->  P  =/=  2 ) )
3124, 30mpbird 223 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
32 modid 10993 . . . . . . 7  |-  ( ( ( 2  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  2  /\  2  <  P ) )  ->  ( 2  mod  P )  =  2 )
3318, 19, 23, 31, 32syl22anc 1183 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  2 )
34 df-2 9804 . . . . . 6  |-  2  =  ( 1  +  1 )
3533, 34syl6eq 2331 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  ( 1  +  1 ) )
3635eqeq1d 2291 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3724neneqd 2462 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  =  2
)
38 2prm 12774 . . . . . . . . . . . 12  |-  2  e.  Prime
39 dvdsprm 12778 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  Prime )  ->  ( P  ||  2  <->  P  = 
2 ) )
4027, 38, 39sylancl 643 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  2  <->  P  =  2 ) )
4137, 40mtbird 292 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  ||  2 )
4241adantr 451 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  2 )
4314a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  1  e.  CC )
444adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
45 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  2  ||  ( ( P  -  1 )  / 
2 ) )
46 oexpneg 12590 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  -.  2  ||  ( ( P  -  1 )  /  2 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  = 
-u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4743, 44, 45, 46syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4844nnzd 10116 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
49 1exp 11131 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
5048, 49syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
5150negeqd 9046 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -u (
1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
5247, 51eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
5352oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  ( -u 1  +  1 ) )
54 neg1cn 9813 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
5514negidi 9115 . . . . . . . . . . . . . 14  |-  ( 1  +  -u 1 )  =  0
5614, 54, 55addcomli 9004 . . . . . . . . . . . . 13  |-  ( -u
1  +  1 )  =  0
5753, 56syl6eq 2331 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  0 )
5857oveq2d 5874 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  ( 2  -  0 ) )
59 2cn 9816 . . . . . . . . . . . 12  |-  2  e.  CC
6059subid1i 9118 . . . . . . . . . . 11  |-  ( 2  -  0 )  =  2
6158, 60syl6eq 2331 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  2 )
6261breq2d 4035 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )  <->  P  ||  2
) )
6342, 62mtbird 292 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) ) )
6463ex 423 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( P  - 
1 )  /  2
)  ->  -.  P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) ) ) )
6564con4d 97 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) )
66 2z 10054 . . . . . . . 8  |-  2  e.  ZZ
6766a1i 10 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  ZZ )
68 moddvds 12538 . . . . . . 7  |-  ( ( P  e.  NN  /\  2  e.  ZZ  /\  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
6911, 67, 8, 68syl3anc 1182 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
70 4nn 9879 . . . . . . . . . . 11  |-  4  e.  NN
7170nnzi 10047 . . . . . . . . . 10  |-  4  e.  ZZ
7271a1i 10 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  ZZ )
7370nnne0i 9780 . . . . . . . . . 10  |-  4  =/=  0
7473a1i 10 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  =/=  0 )
75 nnm1nn0 10005 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
7611, 75syl 15 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  NN0 )
7776nn0zd 10115 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  ZZ )
78 dvdsval2 12534 . . . . . . . . 9  |-  ( ( 4  e.  ZZ  /\  4  =/=  0  /\  ( P  -  1 )  e.  ZZ )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7972, 74, 77, 78syl3anc 1182 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
8076nn0cnd 10020 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  CC )
8159a1i 10 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  CC )
82 2ne0 9829 . . . . . . . . . . . 12  |-  2  =/=  0
8382a1i 10 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  0 )
8480, 81, 81, 83, 83divdiv1d 9567 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  ( 2  x.  2 ) ) )
85 2t2e4 9871 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
8685oveq2i 5869 . . . . . . . . . 10  |-  ( ( P  -  1 )  /  ( 2  x.  2 ) )  =  ( ( P  - 
1 )  /  4
)
8784, 86syl6eq 2331 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  4 ) )
8887eleq1d 2349 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( P  -  1 )  /  2 )  / 
2 )  e.  ZZ  <->  ( ( P  -  1 )  /  4 )  e.  ZZ ) )
8979, 88bitr4d 247 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
904nnzd 10116 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
91 dvdsval2 12534 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
( P  -  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
9267, 83, 90, 91syl3anc 1182 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
9389, 92bitr4d 247 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <->  2  ||  ( ( P  -  1 )  /  2 ) ) )
9465, 69, 933imtr4d 259 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  ->  4  ||  ( P  -  1
) ) )
9554a1i 10 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  e.  CC )
96 ax-1ne0 8806 . . . . . . . . . . . . 13  |-  1  =/=  0
9714, 96negne0i 9121 . . . . . . . . . . . 12  |-  -u 1  =/=  0
9897a1i 10 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  =/=  0 )
9966a1i 10 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  e.  ZZ )
10089biimpa 470 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( (
( P  -  1 )  /  2 )  /  2 )  e.  ZZ )
101 expmulz 11148 . . . . . . . . . . 11  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
10295, 98, 99, 100, 101syl22anc 1183 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
1034nncnd 9762 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  CC )
104103, 81, 83divcan2d 9538 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  x.  (
( ( P  - 
1 )  /  2
)  /  2 ) )  =  ( ( P  -  1 )  /  2 ) )
105104adantr 451 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  x.  ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  ( ( P  - 
1 )  /  2
) )
106105oveq2d 5874 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( -u 1 ^ ( ( P  - 
1 )  /  2
) ) )
107 sqneg 11164 . . . . . . . . . . . . . 14  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
10814, 107ax-mp 8 . . . . . . . . . . . . 13  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
109 sq1 11198 . . . . . . . . . . . . 13  |-  ( 1 ^ 2 )  =  1
110108, 109eqtri 2303 . . . . . . . . . . . 12  |-  ( -u
1 ^ 2 )  =  1
111110oveq1i 5868 . . . . . . . . . . 11  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  ( 1 ^ ( ( ( P  -  1 )  / 
2 )  /  2
) )
112 1exp 11131 . . . . . . . . . . . 12  |-  ( ( ( ( P  - 
1 )  /  2
)  /  2 )  e.  ZZ  ->  (
1 ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  1 )
113100, 112syl 15 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 1 ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
114111, 113syl5eq 2327 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
115102, 106, 1143eqtr3d 2323 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  =  1 )
116115oveq1d 5873 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  =  ( 1  +  1 ) )
117116, 34syl6reqr 2334 . . . . . . 7  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  =  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )
118117oveq1d 5873 . . . . . 6  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  mod  P )  =  ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
119118ex 423 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  ->  ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
12094, 119impbid 183 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  4  ||  ( P  -  1 ) ) )
12116, 36, 1203bitr2d 272 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  4  ||  ( P  -  1 ) ) )
122 lgsval3 20553 . . . . 5  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -u 1  / L P )  =  ( ( ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 ) )
1233, 122mpan 651 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1  / L P )  =  ( ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
124123eqeq1d 2291 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  / L P )  =  1  <->  ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1 ) )
12570a1i 10 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  NN )
126 prmz 12762 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1279, 126syl 15 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
1281a1i 10 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
129 moddvds 12538 . . . 4  |-  ( ( 4  e.  NN  /\  P  e.  ZZ  /\  1  e.  ZZ )  ->  (
( P  mod  4
)  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1
) ) )
130125, 127, 128, 129syl3anc 1182 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  4 )  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1 ) ) )
131121, 124, 1303bitr4d 276 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  / L P )  =  1  <->  ( P  mod  4 )  =  ( 1  mod  4 ) ) )
132 1re 8837 . . . 4  |-  1  e.  RR
133 nnrp 10363 . . . . 5  |-  ( 4  e.  NN  ->  4  e.  RR+ )
13470, 133ax-mp 8 . . . 4  |-  4  e.  RR+
135 0le1 9297 . . . 4  |-  0  <_  1
136 1lt4 9891 . . . 4  |-  1  <  4
137 modid 10993 . . . 4  |-  ( ( ( 1  e.  RR  /\  4  e.  RR+ )  /\  ( 0  <_  1  /\  1  <  4
) )  ->  (
1  mod  4 )  =  1 )
138132, 134, 135, 136, 137mp4an 654 . . 3  |-  ( 1  mod  4 )  =  1
139138eqeq2i 2293 . 2  |-  ( ( P  mod  4 )  =  ( 1  mod  4 )  <->  ( P  mod  4 )  =  1 )
140131, 139syl6bb 252 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  / L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149   {csn 3640   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   4c4 9797   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354    mod cmo 10973   ^cexp 11104    || cdivides 12531   Primecprime 12758    / Lclgs 20533
This theorem is referenced by:  2sqlem11  20614  2sqblem  20616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-phi 12834  df-pc 12890  df-lgs 20534
  Copyright terms: Public domain W3C validator