MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1p1sr Unicode version

Theorem m1p1sr 8931
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
m1p1sr  |-  ( -1R 
+R  1R )  =  0R

Proof of Theorem m1p1sr
StepHypRef Expression
1 df-m1r 8905 . . 3  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
2 df-1r 8904 . . 3  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
31, 2oveq12i 6060 . 2  |-  ( -1R 
+R  1R )  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
4 df-0r 8903 . . 3  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
5 1pr 8856 . . . . 5  |-  1P  e.  P.
6 addclpr 8859 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
75, 5, 6mp2an 654 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
8 addsrpr 8914 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R  )
95, 7, 7, 5, 8mp4an 655 . . . 4  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P 
+P.  1P )  +P.  1P ) >. ]  ~R
10 addasspr 8863 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  1P )  =  ( 1P  +P.  ( 1P  +P.  1P ) )
1110oveq2i 6059 . . . . 5  |-  ( 1P 
+P.  ( ( 1P 
+P.  1P )  +P.  1P ) )  =  ( 1P  +P.  ( 1P 
+P.  ( 1P  +P.  1P ) ) )
12 addclpr 8859 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  +P.  ( 1P  +P.  1P ) )  e.  P. )
135, 7, 12mp2an 654 . . . . . 6  |-  ( 1P 
+P.  ( 1P  +P.  1P ) )  e.  P.
14 addclpr 8859 . . . . . . 7  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  +P.  1P )  e. 
P. )
157, 5, 14mp2an 654 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  1P )  e. 
P.
16 enreceq 8908 . . . . . 6  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( ( 1P  +P.  ( 1P  +P.  1P ) )  e.  P.  /\  ( ( 1P  +P.  1P )  +P.  1P )  e.  P. ) )  ->  ( [ <. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R  <->  ( 1P  +P.  ( ( 1P  +P.  1P )  +P.  1P ) )  =  ( 1P 
+P.  ( 1P  +P.  ( 1P  +P.  1P ) ) ) ) )
175, 5, 13, 15, 16mp4an 655 . . . . 5  |-  ( [
<. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P 
+P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P )
>. ]  ~R  <->  ( 1P  +P.  ( ( 1P  +P.  1P )  +P.  1P ) )  =  ( 1P 
+P.  ( 1P  +P.  ( 1P  +P.  1P ) ) ) )
1811, 17mpbir 201 . . . 4  |-  [ <. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R
199, 18eqtr4i 2435 . . 3  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. 1P ,  1P >. ]  ~R
204, 19eqtr4i 2435 . 2  |-  0R  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
213, 20eqtr4i 2435 1  |-  ( -1R 
+R  1R )  =  0R
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721   <.cop 3785  (class class class)co 6048   [cec 6870   P.cnp 8698   1Pc1p 8699    +P. cpp 8700    ~R cer 8705   0Rc0r 8707   1Rc1r 8708   -1Rcm1r 8709    +R cplr 8710
This theorem is referenced by:  pn0sr  8940  supsrlem  8950  axi2m1  8998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-omul 6696  df-er 6872  df-ec 6874  df-qs 6878  df-ni 8713  df-pli 8714  df-mi 8715  df-lti 8716  df-plpq 8749  df-mpq 8750  df-ltpq 8751  df-enq 8752  df-nq 8753  df-erq 8754  df-plq 8755  df-mq 8756  df-1nq 8757  df-rq 8758  df-ltnq 8759  df-np 8822  df-1p 8823  df-plp 8824  df-ltp 8826  df-plpr 8896  df-enr 8898  df-nr 8899  df-plr 8900  df-0r 8903  df-1r 8904  df-m1r 8905
  Copyright terms: Public domain W3C validator