Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mamuass Structured version   Unicode version

Theorem mamuass 27437
Description: Matrix multiplication is associative. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b  |-  B  =  ( Base `  R
)
mamucl.r  |-  ( ph  ->  R  e.  Ring )
mamuass.m  |-  ( ph  ->  M  e.  Fin )
mamuass.n  |-  ( ph  ->  N  e.  Fin )
mamuass.o  |-  ( ph  ->  O  e.  Fin )
mamuass.p  |-  ( ph  ->  P  e.  Fin )
mamuass.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamuass.y  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  O ) ) )
mamuass.z  |-  ( ph  ->  Z  e.  ( B  ^m  ( O  X.  P ) ) )
mamuass.f  |-  F  =  ( R maMul  <. M ,  N ,  O >. )
mamuass.g  |-  G  =  ( R maMul  <. M ,  O ,  P >. )
mamuass.h  |-  H  =  ( R maMul  <. M ,  N ,  P >. )
mamuass.i  |-  I  =  ( R maMul  <. N ,  O ,  P >. )
Assertion
Ref Expression
mamuass  |-  ( ph  ->  ( ( X F Y ) G Z )  =  ( X H ( Y I Z ) ) )

Proof of Theorem mamuass
Dummy variables  i 
j  k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6  |-  B  =  ( Base `  R
)
2 mamucl.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
3 rngcmn 15694 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. CMnd
)
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  R  e. CMnd )
54adantr 452 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  R  e. CMnd )
6 mamuass.o . . . . . . 7  |-  ( ph  ->  O  e.  Fin )
76adantr 452 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  O  e.  Fin )
8 mamuass.n . . . . . . 7  |-  ( ph  ->  N  e.  Fin )
98adantr 452 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  N  e.  Fin )
102ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  ->  R  e.  Ring )
11 mamuass.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
12 elmapi 7038 . . . . . . . . . . 11  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
1311, 12syl 16 . . . . . . . . . 10  |-  ( ph  ->  X : ( M  X.  N ) --> B )
1413ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  X : ( M  X.  N ) --> B )
15 simplrl 737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  i  e.  M )
16 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  l  e.  N )
1714, 15, 16fovrnd 6218 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  (
i X l )  e.  B )
1817adantrl 697 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( i X l )  e.  B )
19 mamuass.y . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  O ) ) )
20 elmapi 7038 . . . . . . . . . . 11  |-  ( Y  e.  ( B  ^m  ( N  X.  O
) )  ->  Y : ( N  X.  O ) --> B )
2119, 20syl 16 . . . . . . . . . 10  |-  ( ph  ->  Y : ( N  X.  O ) --> B )
2221ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  ->  Y : ( N  X.  O ) --> B )
23 simprr 734 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
l  e.  N )
24 simprl 733 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
j  e.  O )
2522, 23, 24fovrnd 6218 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( l Y j )  e.  B )
26 mamuass.z . . . . . . . . . . . 12  |-  ( ph  ->  Z  e.  ( B  ^m  ( O  X.  P ) ) )
27 elmapi 7038 . . . . . . . . . . . 12  |-  ( Z  e.  ( B  ^m  ( O  X.  P
) )  ->  Z : ( O  X.  P ) --> B )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Z : ( O  X.  P ) --> B )
2928ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  Z : ( O  X.  P ) --> B )
30 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  j  e.  O )
31 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  k  e.  P )
3229, 30, 31fovrnd 6218 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  (
j Z k )  e.  B )
3332adantrr 698 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( j Z k )  e.  B )
34 eqid 2436 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
351, 34rngcl 15677 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
l Y j )  e.  B  /\  (
j Z k )  e.  B )  -> 
( ( l Y j ) ( .r
`  R ) ( j Z k ) )  e.  B )
3610, 25, 33, 35syl3anc 1184 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( ( l Y j ) ( .r
`  R ) ( j Z k ) )  e.  B )
371, 34rngcl 15677 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
i X l )  e.  B  /\  (
( l Y j ) ( .r `  R ) ( j Z k ) )  e.  B )  -> 
( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) )  e.  B )
3810, 18, 36, 37syl3anc 1184 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) )  e.  B )
391, 5, 7, 9, 38gsumcom3fi 27432 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( R  gsumg  ( j  e.  O  |->  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) ) )  =  ( R 
gsumg  ( l  e.  N  |->  ( R  gsumg  ( j  e.  O  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) ) ) )
40 mamuass.f . . . . . . . . . 10  |-  F  =  ( R maMul  <. M ,  N ,  O >. )
412ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  R  e.  Ring )
42 mamuass.m . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Fin )
4342ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  M  e.  Fin )
448ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  N  e.  Fin )
456ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  O  e.  Fin )
4611ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
4719ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  Y  e.  ( B  ^m  ( N  X.  O ) ) )
48 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  i  e.  M )
4940, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30mamufv 27422 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  (
i ( X F Y ) j )  =  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r `  R
) ( l Y j ) ) ) ) )
5049oveq1d 6096 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  (
( i ( X F Y ) j ) ( .r `  R ) ( j Z k ) )  =  ( ( R 
gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( l Y j ) ) ) ) ( .r `  R ) ( j Z k ) ) )
51 eqid 2436 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
52 eqid 2436 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
531, 34rngcl 15677 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
i X l )  e.  B  /\  (
l Y j )  e.  B )  -> 
( ( i X l ) ( .r
`  R ) ( l Y j ) )  e.  B )
5410, 18, 25, 53syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( ( i X l ) ( .r
`  R ) ( l Y j ) )  e.  B )
5554anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  e.  M  /\  k  e.  P
) )  /\  j  e.  O )  /\  l  e.  N )  ->  (
( i X l ) ( .r `  R ) ( l Y j ) )  e.  B )
56 eqid 2436 . . . . . . . . . . 11  |-  ( l  e.  N  |->  ( ( i X l ) ( .r `  R
) ( l Y j ) ) )  =  ( l  e.  N  |->  ( ( i X l ) ( .r `  R ) ( l Y j ) ) )
5755, 56fmptd 5893 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  (
l  e.  N  |->  ( ( i X l ) ( .r `  R ) ( l Y j ) ) ) : N --> B )
5844, 57fisuppfi 14773 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  ( `' ( l  e.  N  |->  ( ( i X l ) ( .r `  R ) ( l Y j ) ) ) "
( _V  \  {
( 0g `  R
) } ) )  e.  Fin )
591, 51, 52, 34, 41, 44, 32, 55, 58gsummulc1 15713 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( ( i X l ) ( .r `  R ) ( l Y j ) ) ( .r
`  R ) ( j Z k ) ) ) )  =  ( ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r `  R
) ( l Y j ) ) ) ) ( .r `  R ) ( j Z k ) ) )
601, 34rngass 15680 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  (
( i X l )  e.  B  /\  ( l Y j )  e.  B  /\  ( j Z k )  e.  B ) )  ->  ( (
( i X l ) ( .r `  R ) ( l Y j ) ) ( .r `  R
) ( j Z k ) )  =  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) )
6110, 18, 25, 33, 60syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  ( j  e.  O  /\  l  e.  N ) )  -> 
( ( ( i X l ) ( .r `  R ) ( l Y j ) ) ( .r
`  R ) ( j Z k ) )  =  ( ( i X l ) ( .r `  R
) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) )
6261anassrs 630 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  e.  M  /\  k  e.  P
) )  /\  j  e.  O )  /\  l  e.  N )  ->  (
( ( i X l ) ( .r
`  R ) ( l Y j ) ) ( .r `  R ) ( j Z k ) )  =  ( ( i X l ) ( .r `  R ) ( ( l Y j ) ( .r
`  R ) ( j Z k ) ) ) )
6362mpteq2dva 4295 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  (
l  e.  N  |->  ( ( ( i X l ) ( .r
`  R ) ( l Y j ) ) ( .r `  R ) ( j Z k ) ) )  =  ( l  e.  N  |->  ( ( i X l ) ( .r `  R
) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) )
6463oveq2d 6097 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( ( i X l ) ( .r `  R ) ( l Y j ) ) ( .r
`  R ) ( j Z k ) ) ) )  =  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) )
6550, 59, 643eqtr2d 2474 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  O )  ->  (
( i ( X F Y ) j ) ( .r `  R ) ( j Z k ) )  =  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r `  R
) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) )
6665mpteq2dva 4295 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( j  e.  O  |->  ( ( i ( X F Y ) j ) ( .r
`  R ) ( j Z k ) ) )  =  ( j  e.  O  |->  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) ) )
6766oveq2d 6097 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( R  gsumg  ( j  e.  O  |->  ( ( i ( X F Y ) j ) ( .r
`  R ) ( j Z k ) ) ) )  =  ( R  gsumg  ( j  e.  O  |->  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) ) ) )
68 mamuass.i . . . . . . . . . 10  |-  I  =  ( R maMul  <. N ,  O ,  P >. )
692ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  R  e.  Ring )
708ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  N  e.  Fin )
716ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  O  e.  Fin )
72 mamuass.p . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Fin )
7372ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  P  e.  Fin )
7419ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  Y  e.  ( B  ^m  ( N  X.  O ) ) )
7526ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  Z  e.  ( B  ^m  ( O  X.  P ) ) )
76 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  k  e.  P )
7768, 1, 34, 69, 70, 71, 73, 74, 75, 16, 76mamufv 27422 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  (
l ( Y I Z ) k )  =  ( R  gsumg  ( j  e.  O  |->  ( ( l Y j ) ( .r `  R
) ( j Z k ) ) ) ) )
7877oveq2d 6097 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  (
( i X l ) ( .r `  R ) ( l ( Y I Z ) k ) )  =  ( ( i X l ) ( .r `  R ) ( R  gsumg  ( j  e.  O  |->  ( ( l Y j ) ( .r
`  R ) ( j Z k ) ) ) ) ) )
7936anass1rs 783 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  e.  M  /\  k  e.  P
) )  /\  l  e.  N )  /\  j  e.  O )  ->  (
( l Y j ) ( .r `  R ) ( j Z k ) )  e.  B )
80 eqid 2436 . . . . . . . . . . 11  |-  ( j  e.  O  |->  ( ( l Y j ) ( .r `  R
) ( j Z k ) ) )  =  ( j  e.  O  |->  ( ( l Y j ) ( .r `  R ) ( j Z k ) ) )
8179, 80fmptd 5893 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  (
j  e.  O  |->  ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) : O --> B )
8271, 81fisuppfi 14773 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  ( `' ( j  e.  O  |->  ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) "
( _V  \  {
( 0g `  R
) } ) )  e.  Fin )
831, 51, 52, 34, 69, 71, 17, 79, 82gsummulc2 15714 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  ( R  gsumg  ( j  e.  O  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) )  =  ( ( i X l ) ( .r
`  R ) ( R  gsumg  ( j  e.  O  |->  ( ( l Y j ) ( .r
`  R ) ( j Z k ) ) ) ) ) )
8478, 83eqtr4d 2471 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  l  e.  N )  ->  (
( i X l ) ( .r `  R ) ( l ( Y I Z ) k ) )  =  ( R  gsumg  ( j  e.  O  |->  ( ( i X l ) ( .r `  R
) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) )
8584mpteq2dva 4295 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( l ( Y I Z ) k ) ) )  =  ( l  e.  N  |->  ( R  gsumg  ( j  e.  O  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) ) )
8685oveq2d 6097 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( l ( Y I Z ) k ) ) ) )  =  ( R  gsumg  ( l  e.  N  |->  ( R  gsumg  ( j  e.  O  |->  ( ( i X l ) ( .r
`  R ) ( ( l Y j ) ( .r `  R ) ( j Z k ) ) ) ) ) ) ) )
8739, 67, 863eqtr4d 2478 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( R  gsumg  ( j  e.  O  |->  ( ( i ( X F Y ) j ) ( .r
`  R ) ( j Z k ) ) ) )  =  ( R  gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( l ( Y I Z ) k ) ) ) ) )
88 mamuass.g . . . . 5  |-  G  =  ( R maMul  <. M ,  O ,  P >. )
892adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  R  e.  Ring )
9042adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  M  e.  Fin )
9172adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  P  e.  Fin )
921, 2, 40, 42, 8, 6, 11, 19mamucl 27433 . . . . . 6  |-  ( ph  ->  ( X F Y )  e.  ( B  ^m  ( M  X.  O ) ) )
9392adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( X F Y )  e.  ( B  ^m  ( M  X.  O ) ) )
9426adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  Z  e.  ( B  ^m  ( O  X.  P
) ) )
95 simprl 733 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
i  e.  M )
96 simprr 734 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
k  e.  P )
9788, 1, 34, 89, 90, 7, 91, 93, 94, 95, 96mamufv 27422 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( i ( ( X F Y ) G Z ) k )  =  ( R 
gsumg  ( j  e.  O  |->  ( ( i ( X F Y ) j ) ( .r
`  R ) ( j Z k ) ) ) ) )
98 mamuass.h . . . . 5  |-  H  =  ( R maMul  <. M ,  N ,  P >. )
9911adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  X  e.  ( B  ^m  ( M  X.  N
) ) )
1001, 2, 68, 8, 6, 72, 19, 26mamucl 27433 . . . . . 6  |-  ( ph  ->  ( Y I Z )  e.  ( B  ^m  ( N  X.  P ) ) )
101100adantr 452 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( Y I Z )  e.  ( B  ^m  ( N  X.  P ) ) )
10298, 1, 34, 89, 90, 9, 91, 99, 101, 95, 96mamufv 27422 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( i ( X H ( Y I Z ) ) k )  =  ( R 
gsumg  ( l  e.  N  |->  ( ( i X l ) ( .r
`  R ) ( l ( Y I Z ) k ) ) ) ) )
10387, 97, 1023eqtr4d 2478 . . 3  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( i ( ( X F Y ) G Z ) k )  =  ( i ( X H ( Y I Z ) ) k ) )
104103ralrimivva 2798 . 2  |-  ( ph  ->  A. i  e.  M  A. k  e.  P  ( i ( ( X F Y ) G Z ) k )  =  ( i ( X H ( Y I Z ) ) k ) )
1051, 2, 88, 42, 6, 72, 92, 26mamucl 27433 . . . 4  |-  ( ph  ->  ( ( X F Y ) G Z )  e.  ( B  ^m  ( M  X.  P ) ) )
106 elmapi 7038 . . . 4  |-  ( ( ( X F Y ) G Z )  e.  ( B  ^m  ( M  X.  P
) )  ->  (
( X F Y ) G Z ) : ( M  X.  P ) --> B )
107 ffn 5591 . . . 4  |-  ( ( ( X F Y ) G Z ) : ( M  X.  P ) --> B  -> 
( ( X F Y ) G Z )  Fn  ( M  X.  P ) )
108105, 106, 1073syl 19 . . 3  |-  ( ph  ->  ( ( X F Y ) G Z )  Fn  ( M  X.  P ) )
1091, 2, 98, 42, 8, 72, 11, 100mamucl 27433 . . . 4  |-  ( ph  ->  ( X H ( Y I Z ) )  e.  ( B  ^m  ( M  X.  P ) ) )
110 elmapi 7038 . . . 4  |-  ( ( X H ( Y I Z ) )  e.  ( B  ^m  ( M  X.  P
) )  ->  ( X H ( Y I Z ) ) : ( M  X.  P
) --> B )
111 ffn 5591 . . . 4  |-  ( ( X H ( Y I Z ) ) : ( M  X.  P ) --> B  -> 
( X H ( Y I Z ) )  Fn  ( M  X.  P ) )
112109, 110, 1113syl 19 . . 3  |-  ( ph  ->  ( X H ( Y I Z ) )  Fn  ( M  X.  P ) )
113 eqfnov2 6177 . . 3  |-  ( ( ( ( X F Y ) G Z )  Fn  ( M  X.  P )  /\  ( X H ( Y I Z ) )  Fn  ( M  X.  P ) )  -> 
( ( ( X F Y ) G Z )  =  ( X H ( Y I Z ) )  <->  A. i  e.  M  A. k  e.  P  ( i ( ( X F Y ) G Z ) k )  =  ( i ( X H ( Y I Z ) ) k ) ) )
114108, 112, 113syl2anc 643 . 2  |-  ( ph  ->  ( ( ( X F Y ) G Z )  =  ( X H ( Y I Z ) )  <->  A. i  e.  M  A. k  e.  P  ( i ( ( X F Y ) G Z ) k )  =  ( i ( X H ( Y I Z ) ) k ) ) )
115104, 114mpbird 224 1  |-  ( ph  ->  ( ( X F Y ) G Z )  =  ( X H ( Y I Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    \ cdif 3317   {csn 3814   <.cotp 3818    e. cmpt 4266    X. cxp 4876    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   Fincfn 7109   Basecbs 13469   +g cplusg 13529   .rcmulr 13530   0gc0g 13723    gsumg cgsu 13724  CMndccmn 15412   Ringcrg 15660   maMul cmmul 27416
This theorem is referenced by:  matrng  27457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-ot 3824  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-0g 13727  df-gsum 13728  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-mulg 14815  df-ghm 15004  df-cntz 15116  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-ur 15665  df-mamu 27418
  Copyright terms: Public domain W3C validator