MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Unicode version

Theorem map2psrpr 8985
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2  |-  C  e. 
R.
Assertion
Ref Expression
map2psrpr  |-  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
Distinct variable groups:    x, A    x, C

Proof of Theorem map2psrpr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 8946 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 4926 . . . 4  |-  ( ( C  +R  -1R )  <R  A  ->  ( ( C  +R  -1R )  e. 
R.  /\  A  e.  R. ) )
32simprd 450 . . 3  |-  ( ( C  +R  -1R )  <R  A  ->  A  e.  R. )
4 map2psrpr.2 . . . . . 6  |-  C  e. 
R.
5 ltasr 8975 . . . . . 6  |-  ( C  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) ) ) )
64, 5ax-mp 8 . . . . 5  |-  ( -1R 
<R  ( ( C  .R  -1R )  +R  A
)  <->  ( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A ) ) )
7 pn0sr 8976 . . . . . . . . . 10  |-  ( C  e.  R.  ->  ( C  +R  ( C  .R  -1R ) )  =  0R )
84, 7ax-mp 8 . . . . . . . . 9  |-  ( C  +R  ( C  .R  -1R ) )  =  0R
98oveq1i 6091 . . . . . . . 8  |-  ( ( C  +R  ( C  .R  -1R ) )  +R  A )  =  ( 0R  +R  A
)
10 addasssr 8963 . . . . . . . 8  |-  ( ( C  +R  ( C  .R  -1R ) )  +R  A )  =  ( C  +R  (
( C  .R  -1R )  +R  A ) )
11 addcomsr 8962 . . . . . . . 8  |-  ( 0R 
+R  A )  =  ( A  +R  0R )
129, 10, 113eqtr3i 2464 . . . . . . 7  |-  ( C  +R  ( ( C  .R  -1R )  +R  A ) )  =  ( A  +R  0R )
13 0idsr 8972 . . . . . . 7  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
1412, 13syl5eq 2480 . . . . . 6  |-  ( A  e.  R.  ->  ( C  +R  ( ( C  .R  -1R )  +R  A ) )  =  A )
1514breq2d 4224 . . . . 5  |-  ( A  e.  R.  ->  (
( C  +R  -1R )  <R  ( C  +R  ( ( C  .R  -1R )  +R  A
) )  <->  ( C  +R  -1R )  <R  A ) )
166, 15syl5bb 249 . . . 4  |-  ( A  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  <->  ( C  +R  -1R )  <R  A ) )
17 m1r 8957 . . . . . . . 8  |-  -1R  e.  R.
18 mulclsr 8959 . . . . . . . 8  |-  ( ( C  e.  R.  /\  -1R  e.  R. )  -> 
( C  .R  -1R )  e.  R. )
194, 17, 18mp2an 654 . . . . . . 7  |-  ( C  .R  -1R )  e. 
R.
20 addclsr 8958 . . . . . . 7  |-  ( ( ( C  .R  -1R )  e.  R.  /\  A  e.  R. )  ->  (
( C  .R  -1R )  +R  A )  e. 
R. )
2119, 20mpan 652 . . . . . 6  |-  ( A  e.  R.  ->  (
( C  .R  -1R )  +R  A )  e. 
R. )
22 df-nr 8935 . . . . . . 7  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
23 breq2 4216 . . . . . . . 8  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  <->  -1R 
<R  ( ( C  .R  -1R )  +R  A
) ) )
24 eqeq2 2445 . . . . . . . . 9  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
2524rexbidv 2726 . . . . . . . 8  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  E. x  e.  P.  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
2623, 25imbi12d 312 . . . . . . 7  |-  ( [
<. y ,  z >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  (
( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  ) 
<->  ( -1R  <R  (
( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) ) )
27 df-m1r 8941 . . . . . . . . . . 11  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
2827breq1i 4219 . . . . . . . . . 10  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  <->  [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. y ,  z >. ]  ~R  )
29 addasspr 8899 . . . . . . . . . . . 12  |-  ( ( 1P  +P.  1P )  +P.  y )  =  ( 1P  +P.  ( 1P  +P.  y ) )
3029breq2i 4220 . . . . . . . . . . 11  |-  ( ( 1P  +P.  z ) 
<P  ( ( 1P  +P.  1P )  +P.  y )  <-> 
( 1P  +P.  z
)  <P  ( 1P  +P.  ( 1P  +P.  y ) ) )
31 ltsrpr 8952 . . . . . . . . . . 11  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. y ,  z
>. ]  ~R  <->  ( 1P  +P.  z )  <P  (
( 1P  +P.  1P )  +P.  y ) )
32 1pr 8892 . . . . . . . . . . . 12  |-  1P  e.  P.
33 ltapr 8922 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  (
z  <P  ( 1P  +P.  y )  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) ) )
3432, 33ax-mp 8 . . . . . . . . . . 11  |-  ( z 
<P  ( 1P  +P.  y
)  <->  ( 1P  +P.  z )  <P  ( 1P  +P.  ( 1P  +P.  y ) ) )
3530, 31, 343bitr4i 269 . . . . . . . . . 10  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. y ,  z
>. ]  ~R  <->  z  <P  ( 1P  +P.  y ) )
3628, 35bitri 241 . . . . . . . . 9  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  <->  z  <P  ( 1P  +P.  y ) )
37 ltexpri 8920 . . . . . . . . 9  |-  ( z 
<P  ( 1P  +P.  y
)  ->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) )
3836, 37sylbi 188 . . . . . . . 8  |-  ( -1R 
<R  [ <. y ,  z
>. ]  ~R  ->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) )
39 enreceq 8944 . . . . . . . . . . . 12  |-  ( ( ( x  e.  P.  /\  1P  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
4032, 39mpanl2 663 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) ) )
41 addcompr 8898 . . . . . . . . . . . 12  |-  ( z  +P.  x )  =  ( x  +P.  z
)
4241eqeq1i 2443 . . . . . . . . . . 11  |-  ( ( z  +P.  x )  =  ( 1P  +P.  y )  <->  ( x  +P.  z )  =  ( 1P  +P.  y ) )
4340, 42syl6bbr 255 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  <->  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
4443ancoms 440 . . . . . . . . 9  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  x  e.  P. )  ->  ( [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z
>. ]  ~R  <->  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
4544rexbidva 2722 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. x  e. 
P.  [ <. x ,  1P >. ]  ~R  =  [ <. y ,  z
>. ]  ~R  <->  E. x  e.  P.  ( z  +P.  x )  =  ( 1P  +P.  y ) ) )
4638, 45syl5ibr 213 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( -1R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  [ <. y ,  z >. ]  ~R  ) )
4722, 26, 46ecoptocl 6994 . . . . . 6  |-  ( ( ( C  .R  -1R )  +R  A )  e. 
R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) ) )
4821, 47syl 16 . . . . 5  |-  ( A  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A
) ) )
49 oveq2 6089 . . . . . . . 8  |-  ( [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  ( C  +R  ( ( C  .R  -1R )  +R  A
) ) )
5049, 14sylan9eqr 2490 . . . . . . 7  |-  ( ( A  e.  R.  /\  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A ) )  -> 
( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
5150ex 424 . . . . . 6  |-  ( A  e.  R.  ->  ( [ <. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  -> 
( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A ) )
5251reximdv 2817 . . . . 5  |-  ( A  e.  R.  ->  ( E. x  e.  P.  [
<. x ,  1P >. ]  ~R  =  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
5348, 52syld 42 . . . 4  |-  ( A  e.  R.  ->  ( -1R  <R  ( ( C  .R  -1R )  +R  A )  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
5416, 53sylbird 227 . . 3  |-  ( A  e.  R.  ->  (
( C  +R  -1R )  <R  A  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A ) )
553, 54mpcom 34 . 2  |-  ( ( C  +R  -1R )  <R  A  ->  E. x  e.  P.  ( C  +R  [
<. x ,  1P >. ]  ~R  )  =  A )
564mappsrpr 8983 . . . . 5  |-  ( ( C  +R  -1R )  <R  ( C  +R  [ <. x ,  1P >. ]  ~R  )  <->  x  e.  P. )
57 breq2 4216 . . . . 5  |-  ( ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( ( C  +R  -1R )  <R  ( C  +R  [
<. x ,  1P >. ]  ~R  )  <->  ( C  +R  -1R )  <R  A ) )
5856, 57syl5bbr 251 . . . 4  |-  ( ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( x  e.  P.  <->  ( C  +R  -1R )  <R  A ) )
5958biimpac 473 . . 3  |-  ( ( x  e.  P.  /\  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )  ->  ( C  +R  -1R )  <R  A )
6059rexlimiva 2825 . 2  |-  ( E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A  ->  ( C  +R  -1R )  <R  A )
6155, 60impbii 181 1  |-  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   <.cop 3817   class class class wbr 4212  (class class class)co 6081   [cec 6903   P.cnp 8734   1Pc1p 8735    +P. cpp 8736    <P cltp 8738    ~R cer 8741   R.cnr 8742   0Rc0r 8743   -1Rcm1r 8745    +R cplr 8746    .R cmr 8747    <R cltr 8748
This theorem is referenced by:  supsrlem  8986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-ni 8749  df-pli 8750  df-mi 8751  df-lti 8752  df-plpq 8785  df-mpq 8786  df-ltpq 8787  df-enq 8788  df-nq 8789  df-erq 8790  df-plq 8791  df-mq 8792  df-1nq 8793  df-rq 8794  df-ltnq 8795  df-np 8858  df-1p 8859  df-plp 8860  df-mp 8861  df-ltp 8862  df-plpr 8932  df-mpr 8933  df-enr 8934  df-nr 8935  df-plr 8936  df-mr 8937  df-ltr 8938  df-0r 8939  df-1r 8940  df-m1r 8941
  Copyright terms: Public domain W3C validator