Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Unicode version

Theorem mapd1o 32508
Description: The map defined by df-mapd 32485 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows  M satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 32445, mapdrval 32507, lclkrs 32399, lclkr 32393,...) to use  T  i^i  ~P C? TODO: maybe get rid of $d's for  g vs.  K U W,. propagate to mapdrn 32509 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h  |-  H  =  ( LHyp `  K
)
mapd1o.o  |-  O  =  ( ( ocH `  K
) `  W )
mapd1o.m  |-  M  =  ( (mapd `  K
) `  W )
mapd1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapd1o.s  |-  S  =  ( LSubSp `  U )
mapd1o.f  |-  F  =  (LFnl `  U )
mapd1o.l  |-  L  =  (LKer `  U )
mapd1o.d  |-  D  =  (LDual `  U )
mapd1o.t  |-  T  =  ( LSubSp `  D )
mapd1o.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
mapd1o.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
mapd1o  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Distinct variable groups:    g, F    g, K    g, L    g, O    U, g    g, W
Allowed substitution hints:    ph( g)    C( g)    D( g)    S( g)    T( g)    H( g)    M( g)

Proof of Theorem mapd1o
Dummy variables  f 
c  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6  |-  F  =  (LFnl `  U )
2 fvex 5744 . . . . . 6  |-  (LFnl `  U )  e.  _V
31, 2eqeltri 2508 . . . . 5  |-  F  e. 
_V
43rabex 4356 . . . 4  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) }  e.  _V
5 eqid 2438 . . . 4  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )
64, 5fnmpti 5575 . . 3  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  Fn  S
7 mapd1o.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
8 mapd1o.h . . . . . 6  |-  H  =  ( LHyp `  K
)
9 mapd1o.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
10 mapd1o.s . . . . . 6  |-  S  =  ( LSubSp `  U )
11 mapd1o.l . . . . . 6  |-  L  =  (LKer `  U )
12 mapd1o.o . . . . . 6  |-  O  =  ( ( ocH `  K
) `  W )
13 mapd1o.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
148, 9, 10, 1, 11, 12, 13mapdfval 32487 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
157, 14syl 16 . . . 4  |-  ( ph  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
1615fneq1d 5538 . . 3  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  t ) } )  Fn  S ) )
176, 16mpbiri 226 . 2  |-  ( ph  ->  M  Fn  S )
183rabex 4356 . . . . . . 7  |-  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) }  e.  _V
19 eqid 2438 . . . . . . 7  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )
2018, 19fnmpti 5575 . . . . . 6  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  Fn  S
218, 9, 10, 1, 11, 12, 13mapdfval 32487 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
227, 21syl 16 . . . . . . 7  |-  ( ph  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
2322fneq1d 5538 . . . . . 6  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { g  e.  F  | 
( ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g )  /\  ( O `  ( L `
 g ) ) 
C_  t ) } )  Fn  S ) )
2420, 23mpbiri 226 . . . . 5  |-  ( ph  ->  M  Fn  S )
25 fvelrnb 5776 . . . . 5  |-  ( M  Fn  S  ->  (
t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
2624, 25syl 16 . . . 4  |-  ( ph  ->  ( t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
277adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simpr 449 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  c  e.  S )
298, 9, 10, 1, 11, 12, 13, 27, 28mapdval 32488 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) } )
30 mapd1o.d . . . . . . . . . 10  |-  D  =  (LDual `  U )
31 mapd1o.t . . . . . . . . . 10  |-  T  =  ( LSubSp `  D )
32 mapd1o.c . . . . . . . . . 10  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
33 eqid 2438 . . . . . . . . . 10  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }
348, 12, 9, 10, 1, 11, 30, 31, 32, 33, 27, 28lclkrs2 32400 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C ) )
35 elin 3532 . . . . . . . . . 10  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ( T  i^i  ~P C )  <->  ( {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  T  /\  {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C ) )
363rabex 4356 . . . . . . . . . . . 12  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  _V
3736elpw 3807 . . . . . . . . . . 11  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C )
3837anbi2i 677 . . . . . . . . . 10  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C )  <-> 
( { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C ) )
3935, 38bitr2i 243 . . . . . . . . 9  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C )  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4034, 39sylib 190 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4129, 40eqeltrd 2512 . . . . . . 7  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  e.  ( T  i^i  ~P C ) )
42 eleq1 2498 . . . . . . 7  |-  ( ( M `  c )  =  t  ->  (
( M `  c
)  e.  ( T  i^i  ~P C )  <-> 
t  e.  ( T  i^i  ~P C ) ) )
4341, 42syl5ibcom 213 . . . . . 6  |-  ( (
ph  /\  c  e.  S )  ->  (
( M `  c
)  =  t  -> 
t  e.  ( T  i^i  ~P C ) ) )
4443rexlimdva 2832 . . . . 5  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  ->  t  e.  ( T  i^i  ~P C
) ) )
45 eqid 2438 . . . . . . . 8  |-  U_ f  e.  t  ( O `  ( L `  f
) )  =  U_ f  e.  t  ( O `  ( L `  f ) )
467adantr 453 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
47 inss1 3563 . . . . . . . . . 10  |-  ( T  i^i  ~P C ) 
C_  T
4847sseli 3346 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  T )
4948adantl 454 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  e.  T )
50 inss2 3564 . . . . . . . . . . 11  |-  ( T  i^i  ~P C ) 
C_  ~P C
5150sseli 3346 . . . . . . . . . 10  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  ~P C )
5251elpwid 3810 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  C_  C )
5352adantl 454 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  C_  C )
548, 12, 9, 10, 1, 11, 30, 31, 32, 45, 46, 49, 53lcfr 32445 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  U_ f  e.  t  ( O `  ( L `  f
) )  e.  S
)
558, 12, 13, 9, 10, 1, 11, 30, 31, 32, 46, 49, 53, 45mapdrval 32507 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( M `  U_ f  e.  t  ( O `  ( L `  f ) ) )  =  t )
56 fveq2 5730 . . . . . . . . 9  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( M `  c )  =  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) ) )
5756eqeq1d 2446 . . . . . . . 8  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( ( M `  c )  =  t  <->  ( M `  U_ f  e.  t  ( O `  ( L `
 f ) ) )  =  t ) )
5857rspcev 3054 . . . . . . 7  |-  ( (
U_ f  e.  t  ( O `  ( L `  f )
)  e.  S  /\  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) )  =  t )  ->  E. c  e.  S  ( M `  c )  =  t )
5954, 55, 58syl2anc 644 . . . . . 6  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  E. c  e.  S  ( M `  c )  =  t )
6059ex 425 . . . . 5  |-  ( ph  ->  ( t  e.  ( T  i^i  ~P C
)  ->  E. c  e.  S  ( M `  c )  =  t ) )
6144, 60impbid 185 . . . 4  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6226, 61bitrd 246 . . 3  |-  ( ph  ->  ( t  e.  ran  M  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6362eqrdv 2436 . 2  |-  ( ph  ->  ran  M  =  ( T  i^i  ~P C
) )
647adantr 453 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
65 simprl 734 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
t  e.  S )
66 simprr 735 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  ->  u  e.  S )
678, 9, 10, 13, 64, 65, 66mapd11 32499 . . . 4  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  <-> 
t  =  u ) )
6867biimpd 200 . . 3  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
6968ralrimivva 2800 . 2  |-  ( ph  ->  A. t  e.  S  A. u  e.  S  ( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
70 dff1o6 6015 . 2  |-  ( M : S -1-1-onto-> ( T  i^i  ~P C )  <->  ( M  Fn  S  /\  ran  M  =  ( T  i^i  ~P C )  /\  A. t  e.  S  A. u  e.  S  (
( M `  t
)  =  ( M `
 u )  -> 
t  =  u ) ) )
7117, 63, 69, 70syl3anbrc 1139 1  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   U_ciun 4095    e. cmpt 4268   ran crn 4881    Fn wfn 5451   -1-1-onto->wf1o 5455   ` cfv 5456   LSubSpclss 16010  LFnlclfn 29917  LKerclk 29945  LDualcld 29983   HLchlt 30210   LHypclh 30843   DVecHcdvh 31938   ocHcoch 32207  mapdcmpd 32484
This theorem is referenced by:  mapdrn  32509  mapdcnvcl  32512  mapdcl  32513  mapdcnvid1N  32514  mapdcnvid2  32517
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-undef 6545  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-0g 13729  df-mre 13813  df-mrc 13814  df-acs 13816  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-mnd 14692  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-subg 14943  df-cntz 15118  df-oppg 15144  df-lsm 15272  df-cmn 15416  df-abl 15417  df-mgp 15651  df-rng 15665  df-ur 15667  df-oppr 15730  df-dvdsr 15748  df-unit 15749  df-invr 15779  df-dvr 15790  df-drng 15839  df-lmod 15954  df-lss 16011  df-lsp 16050  df-lvec 16177  df-lsatoms 29836  df-lshyp 29837  df-lcv 29879  df-lfl 29918  df-lkr 29946  df-ldual 29984  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-llines 30357  df-lplanes 30358  df-lvols 30359  df-lines 30360  df-psubsp 30362  df-pmap 30363  df-padd 30655  df-lhyp 30847  df-laut 30848  df-ldil 30963  df-ltrn 30964  df-trl 31018  df-tgrp 31602  df-tendo 31614  df-edring 31616  df-dveca 31862  df-disoa 31889  df-dvech 31939  df-dib 31999  df-dic 32033  df-dih 32089  df-doch 32208  df-djh 32255  df-mapd 32485
  Copyright terms: Public domain W3C validator