Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdat Structured version   Unicode version

Theorem mapdat 32466
Description: Atoms are preserved by the map defined by df-mapd 32424. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdat.h  |-  H  =  ( LHyp `  K
)
mapdat.m  |-  M  =  ( (mapd `  K
) `  W )
mapdat.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdat.a  |-  A  =  (LSAtoms `  U )
mapdat.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdat.b  |-  B  =  (LSAtoms `  C )
mapdat.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdat.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
mapdat  |-  ( ph  ->  ( M `  Q
)  e.  B )

Proof of Theorem mapdat
StepHypRef Expression
1 mapdat.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdat.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdat.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2437 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
5 mapdat.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
6 eqid 2437 . . . 4  |-  ( 0g
`  C )  =  ( 0g `  C
)
7 mapdat.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
81, 2, 3, 4, 5, 6, 7mapd0 32464 . . 3  |-  ( ph  ->  ( M `  {
( 0g `  U
) } )  =  { ( 0g `  C ) } )
9 mapdat.a . . . . 5  |-  A  =  (LSAtoms `  U )
10 eqid 2437 . . . . 5  |-  (  <oLL  `  U
)  =  (  <oLL  `  U
)
111, 3, 7dvhlvec 31908 . . . . 5  |-  ( ph  ->  U  e.  LVec )
12 mapdat.q . . . . 5  |-  ( ph  ->  Q  e.  A )
134, 9, 10, 11, 12lsatcv0 29830 . . . 4  |-  ( ph  ->  { ( 0g `  U ) }  (  <oLL  `  U ) Q )
14 eqid 2437 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
15 eqid 2437 . . . . 5  |-  (  <oLL  `  C
)  =  (  <oLL  `  C
)
161, 3, 7dvhlmod 31909 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
174, 14lsssn0 16025 . . . . . 6  |-  ( U  e.  LMod  ->  { ( 0g `  U ) }  e.  ( LSubSp `  U ) )
1816, 17syl 16 . . . . 5  |-  ( ph  ->  { ( 0g `  U ) }  e.  ( LSubSp `  U )
)
1914, 9, 16, 12lsatlssel 29796 . . . . 5  |-  ( ph  ->  Q  e.  ( LSubSp `  U ) )
201, 2, 3, 14, 10, 5, 15, 7, 18, 19mapdcv 32459 . . . 4  |-  ( ph  ->  ( { ( 0g
`  U ) }  (  <oLL  `  U ) Q  <-> 
( M `  {
( 0g `  U
) } ) ( 
<oLL  `  C ) ( M `
 Q ) ) )
2113, 20mpbid 203 . . 3  |-  ( ph  ->  ( M `  {
( 0g `  U
) } ) ( 
<oLL  `  C ) ( M `
 Q ) )
228, 21eqbrtrrd 4235 . 2  |-  ( ph  ->  { ( 0g `  C ) }  (  <oLL  `  C ) ( M `
 Q ) )
23 eqid 2437 . . 3  |-  ( LSubSp `  C )  =  (
LSubSp `  C )
24 mapdat.b . . 3  |-  B  =  (LSAtoms `  C )
251, 5, 7lcdlvec 32390 . . 3  |-  ( ph  ->  C  e.  LVec )
261, 2, 3, 14, 5, 23, 7, 19mapdcl2 32455 . . 3  |-  ( ph  ->  ( M `  Q
)  e.  ( LSubSp `  C ) )
276, 23, 24, 15, 25, 26lsat0cv 29832 . 2  |-  ( ph  ->  ( ( M `  Q )  e.  B  <->  { ( 0g `  C
) }  (  <oLL  `  C
) ( M `  Q ) ) )
2822, 27mpbird 225 1  |-  ( ph  ->  ( M `  Q
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   {csn 3815   class class class wbr 4213   ` cfv 5455   0gc0g 13724   LModclmod 15951   LSubSpclss 16009  LSAtomsclsa 29773    <oLL clcv 29817   HLchlt 30149   LHypclh 30782   DVecHcdvh 31877  LCDualclcd 32385  mapdcmpd 32423
This theorem is referenced by:  mapdspex  32467  mapdpglem5N  32476  mapdpglem20  32490  mapdpglem30a  32494  mapdpglem30b  32495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-tpos 6480  df-undef 6544  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-n0 10223  df-z 10284  df-uz 10490  df-fz 11045  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-sca 13546  df-vsca 13547  df-0g 13728  df-mre 13812  df-mrc 13813  df-acs 13815  df-poset 14404  df-plt 14416  df-lub 14432  df-glb 14433  df-join 14434  df-meet 14435  df-p0 14469  df-p1 14470  df-lat 14476  df-clat 14538  df-mnd 14691  df-submnd 14740  df-grp 14813  df-minusg 14814  df-sbg 14815  df-subg 14942  df-cntz 15117  df-oppg 15143  df-lsm 15271  df-cmn 15415  df-abl 15416  df-mgp 15650  df-rng 15664  df-ur 15666  df-oppr 15729  df-dvdsr 15747  df-unit 15748  df-invr 15778  df-dvr 15789  df-drng 15838  df-lmod 15953  df-lss 16010  df-lsp 16049  df-lvec 16176  df-lsatoms 29775  df-lshyp 29776  df-lcv 29818  df-lfl 29857  df-lkr 29885  df-ldual 29923  df-oposet 29975  df-ol 29977  df-oml 29978  df-covers 30065  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150  df-llines 30296  df-lplanes 30297  df-lvols 30298  df-lines 30299  df-psubsp 30301  df-pmap 30302  df-padd 30594  df-lhyp 30786  df-laut 30787  df-ldil 30902  df-ltrn 30903  df-trl 30957  df-tgrp 31541  df-tendo 31553  df-edring 31555  df-dveca 31801  df-disoa 31828  df-dvech 31878  df-dib 31938  df-dic 31972  df-dih 32028  df-doch 32147  df-djh 32194  df-lcdual 32386  df-mapd 32424
  Copyright terms: Public domain W3C validator