Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdcv Unicode version

Theorem mapdcv 32472
Description: Covering property of the converse of the map defined by df-mapd 32437. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdcv.h  |-  H  =  ( LHyp `  K
)
mapdcv.m  |-  M  =  ( (mapd `  K
) `  W )
mapdcv.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdcv.s  |-  S  =  ( LSubSp `  U )
mapdcv.c  |-  C  =  (  <oLL  `  U )
mapdcv.d  |-  D  =  ( (LCDual `  K
) `  W )
mapdcv.e  |-  E  =  (  <oLL  `  D )
mapdcv.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdcv.x  |-  ( ph  ->  X  e.  S )
mapdcv.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mapdcv  |-  ( ph  ->  ( X C Y  <-> 
( M `  X
) E ( M `
 Y ) ) )

Proof of Theorem mapdcv
Dummy variables  v 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdcv.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdcv.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdcv.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdcv.s . . . 4  |-  S  =  ( LSubSp `  U )
5 mapdcv.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
6 mapdcv.x . . . 4  |-  ( ph  ->  X  e.  S )
7 mapdcv.y . . . 4  |-  ( ph  ->  Y  e.  S )
81, 2, 3, 4, 5, 6, 7mapdsord 32467 . . 3  |-  ( ph  ->  ( ( M `  X )  C.  ( M `  Y )  <->  X 
C.  Y ) )
9 mapdcv.d . . . . . . 7  |-  D  =  ( (LCDual `  K
) `  W )
10 eqid 2296 . . . . . . 7  |-  ( LSubSp `  D )  =  (
LSubSp `  D )
115adantr 451 . . . . . . 7  |-  ( (
ph  /\  v  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 simpr 447 . . . . . . 7  |-  ( (
ph  /\  v  e.  S )  ->  v  e.  S )
131, 2, 3, 4, 9, 10, 11, 12mapdcl2 32468 . . . . . 6  |-  ( (
ph  /\  v  e.  S )  ->  ( M `  v )  e.  ( LSubSp `  D )
)
145adantr 451 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( LSubSp `  D )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
151, 2, 9, 10, 5mapdrn2 32463 . . . . . . . . . 10  |-  ( ph  ->  ran  M  =  (
LSubSp `  D ) )
1615eleq2d 2363 . . . . . . . . 9  |-  ( ph  ->  ( f  e.  ran  M  <-> 
f  e.  ( LSubSp `  D ) ) )
1716biimpar 471 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( LSubSp `  D )
)  ->  f  e.  ran  M )
181, 2, 3, 4, 14, 17mapdcnvcl 32464 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( LSubSp `  D )
)  ->  ( `' M `  f )  e.  S )
191, 2, 14, 17mapdcnvid2 32469 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( LSubSp `  D )
)  ->  ( M `  ( `' M `  f ) )  =  f )
2019eqcomd 2301 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( LSubSp `  D )
)  ->  f  =  ( M `  ( `' M `  f ) ) )
21 fveq2 5541 . . . . . . . . 9  |-  ( v  =  ( `' M `  f )  ->  ( M `  v )  =  ( M `  ( `' M `  f ) ) )
2221eqeq2d 2307 . . . . . . . 8  |-  ( v  =  ( `' M `  f )  ->  (
f  =  ( M `
 v )  <->  f  =  ( M `  ( `' M `  f ) ) ) )
2322rspcev 2897 . . . . . . 7  |-  ( ( ( `' M `  f )  e.  S  /\  f  =  ( M `  ( `' M `  f )
) )  ->  E. v  e.  S  f  =  ( M `  v ) )
2418, 20, 23syl2anc 642 . . . . . 6  |-  ( (
ph  /\  f  e.  ( LSubSp `  D )
)  ->  E. v  e.  S  f  =  ( M `  v ) )
25 psseq2 3277 . . . . . . . 8  |-  ( f  =  ( M `  v )  ->  (
( M `  X
)  C.  f  <->  ( M `  X )  C.  ( M `  v )
) )
26 psseq1 3276 . . . . . . . 8  |-  ( f  =  ( M `  v )  ->  (
f  C.  ( M `  Y )  <->  ( M `  v )  C.  ( M `  Y )
) )
2725, 26anbi12d 691 . . . . . . 7  |-  ( f  =  ( M `  v )  ->  (
( ( M `  X )  C.  f  /\  f  C.  ( M `
 Y ) )  <-> 
( ( M `  X )  C.  ( M `  v )  /\  ( M `  v
)  C.  ( M `  Y ) ) ) )
2827adantl 452 . . . . . 6  |-  ( (
ph  /\  f  =  ( M `  v ) )  ->  ( (
( M `  X
)  C.  f  /\  f  C.  ( M `  Y ) )  <->  ( ( M `  X )  C.  ( M `  v
)  /\  ( M `  v )  C.  ( M `  Y )
) ) )
2913, 24, 28rexxfrd 4565 . . . . 5  |-  ( ph  ->  ( E. f  e.  ( LSubSp `  D )
( ( M `  X )  C.  f  /\  f  C.  ( M `
 Y ) )  <->  E. v  e.  S  ( ( M `  X )  C.  ( M `  v )  /\  ( M `  v
)  C.  ( M `  Y ) ) ) )
306adantr 451 . . . . . . . 8  |-  ( (
ph  /\  v  e.  S )  ->  X  e.  S )
311, 2, 3, 4, 11, 30, 12mapdsord 32467 . . . . . . 7  |-  ( (
ph  /\  v  e.  S )  ->  (
( M `  X
)  C.  ( M `  v )  <->  X  C.  v ) )
327adantr 451 . . . . . . . 8  |-  ( (
ph  /\  v  e.  S )  ->  Y  e.  S )
331, 2, 3, 4, 11, 12, 32mapdsord 32467 . . . . . . 7  |-  ( (
ph  /\  v  e.  S )  ->  (
( M `  v
)  C.  ( M `  Y )  <->  v  C.  Y ) )
3431, 33anbi12d 691 . . . . . 6  |-  ( (
ph  /\  v  e.  S )  ->  (
( ( M `  X )  C.  ( M `  v )  /\  ( M `  v
)  C.  ( M `  Y ) )  <->  ( X  C.  v  /\  v  C.  Y ) ) )
3534rexbidva 2573 . . . . 5  |-  ( ph  ->  ( E. v  e.  S  ( ( M `
 X )  C.  ( M `  v )  /\  ( M `  v )  C.  ( M `  Y )
)  <->  E. v  e.  S  ( X  C.  v  /\  v  C.  Y ) ) )
3629, 35bitrd 244 . . . 4  |-  ( ph  ->  ( E. f  e.  ( LSubSp `  D )
( ( M `  X )  C.  f  /\  f  C.  ( M `
 Y ) )  <->  E. v  e.  S  ( X  C.  v  /\  v  C.  Y ) ) )
3736notbid 285 . . 3  |-  ( ph  ->  ( -.  E. f  e.  ( LSubSp `  D )
( ( M `  X )  C.  f  /\  f  C.  ( M `
 Y ) )  <->  -.  E. v  e.  S  ( X  C.  v  /\  v  C.  Y ) ) )
388, 37anbi12d 691 . 2  |-  ( ph  ->  ( ( ( M `
 X )  C.  ( M `  Y )  /\  -.  E. f  e.  ( LSubSp `  D )
( ( M `  X )  C.  f  /\  f  C.  ( M `
 Y ) ) )  <->  ( X  C.  Y  /\  -.  E. v  e.  S  ( X  C.  v  /\  v  C.  Y ) ) ) )
39 mapdcv.e . . 3  |-  E  =  (  <oLL  `  D )
401, 9, 5lcdlmod 32404 . . 3  |-  ( ph  ->  D  e.  LMod )
411, 2, 3, 4, 9, 10, 5, 6mapdcl2 32468 . . 3  |-  ( ph  ->  ( M `  X
)  e.  ( LSubSp `  D ) )
421, 2, 3, 4, 9, 10, 5, 7mapdcl2 32468 . . 3  |-  ( ph  ->  ( M `  Y
)  e.  ( LSubSp `  D ) )
4310, 39, 40, 41, 42lcvbr 29833 . 2  |-  ( ph  ->  ( ( M `  X ) E ( M `  Y )  <-> 
( ( M `  X )  C.  ( M `  Y )  /\  -.  E. f  e.  ( LSubSp `  D )
( ( M `  X )  C.  f  /\  f  C.  ( M `
 Y ) ) ) ) )
44 mapdcv.c . . 3  |-  C  =  (  <oLL  `  U )
451, 3, 5dvhlmod 31922 . . 3  |-  ( ph  ->  U  e.  LMod )
464, 44, 45, 6, 7lcvbr 29833 . 2  |-  ( ph  ->  ( X C Y  <-> 
( X  C.  Y  /\  -.  E. v  e.  S  ( X  C.  v  /\  v  C.  Y
) ) ) )
4738, 43, 463bitr4rd 277 1  |-  ( ph  ->  ( X C Y  <-> 
( M `  X
) E ( M `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557    C. wpss 3166   class class class wbr 4039   `'ccnv 4704   ran crn 4706   ` cfv 5271   LModclmod 15643   LSubSpclss 15705    <oLL clcv 29830   HLchlt 30162   LHypclh 30795   DVecHcdvh 31890  LCDualclcd 32398  mapdcmpd 32436
This theorem is referenced by:  mapdcnvatN  32478  mapdat  32479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-oppg 14835  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lvec 15872  df-lsatoms 29788  df-lshyp 29789  df-lcv 29831  df-lfl 29870  df-lkr 29898  df-ldual 29936  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tgrp 31554  df-tendo 31566  df-edring 31568  df-dveca 31814  df-disoa 31841  df-dvech 31891  df-dib 31951  df-dic 31985  df-dih 32041  df-doch 32160  df-djh 32207  df-lcdual 32399  df-mapd 32437
  Copyright terms: Public domain W3C validator